
Information & Method
Logic for Translational Science

Frank P. DeVita

Submitted in partial fulfillment 
of the requirements for the degree 

of Master of Arts 
in the Graduate School of Arts & Sciences

Program in Biotechnology
Department of Biological Sciences

COLUMBIA UNIVERSITY

2018



© 2018 
Frank P. DeVita 

All Rights Reserved  



Abstract

How do information, rationality, method, and knowledge dynamics shape 

what’s possible with science? How do we make maximum contact with reality 

through scientific methods and reasoning? When can we assert scientific facts 

and confidently act on them? In this work, I approach these questions through a 

study of scientific rationality, information, and philosophical logic in context with 

some practical and theoretical challenges in contemporary life science research. 

The productive aim is to outline tactics for understanding the relations among 

scientific knowledge, information, rationality, and action that optimize decision 

making  in  scientific  situations.  There  is  a  practical  focus  on  translational 

biomedicine and molecular  oncology because these  fields  aim to  bridge gaps 

between theory and practice, and the dependence of rational decision making on 

knowledge  relations  is  critical  to  their  success.  In  my  view,  these  and  other 

precision  scientific  approaches  may  be  better  understood  and  executed  by 

adopting  pluralist  and  dynamic  perspectives  on  science,  information,  and 

knowledge that,  I  argue,  make better  contact  with  reality  than some existing 

knowledge-making strategies that aim to precipitate isolated scientific facts from 

interacting, evolving, and causally related bodies of information.
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Preface

These  ideas  developed  through  gaining  close  acquaintance  with  the 

engineering and informatics aspects of contemporary biotechnology, professional 

exposure  to  the  challenges  of  translational  “bench-to-bedside”  biomedical 

research, and critical consideration of the logic and practice of science. Their core 

philosophical  foundations  developed  over  a  series  of  seminars  in  the 

Departments  of  Biological  Sciences  and  Philosophy  at  Columbia  University 

between 2016 and 2018 covering perception, pluralism, and theory of knowledge. 

As they struck me, these talks made apparent theoretical and practical questions 

associated with entrenched patterns of scientific reasoning, and the their impact 

on the burgeoning era of precision medicine and its revolutionary aims: 

“Precision medicine endeavors to redefine our understanding of disease 
onset and progression, treatment response, and health outcomes through the 
more precise measurement of potential contributors — for example, molecular 
measurements as captured through DNA sequencing technologies or 
environmental exposures or other information…” 

(Precision Medicine Initiative 2015, my italics)

Deeper  thought  about  this  endeavor  of  precision  medicine  suggest  several 

possible  strategies  for  executing  the  approach,  and  the  potential  for  a 

information-driven  paradigm  shift  in  biomedical  science.  In  my  view,  this 

possibility hinges greatly on understanding how these “potential contributors” 
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identified with biotechnology may contribute to determining the significance of 

molecular  data  in  context  with  existing  knowledge  and  information,  new 

discoveries, and the methods we use to determine and act on that data. 

In what follows, I consider theoretical and practical aspects of scientific 

activity that aim to convert information into knowledge and action. I think the 

dynamics of this conversion can be clarified through the use of logic. My main 

analytical targets are some theoretical presuppositions of precision approaches 

that may affect its realization and expansion over time. My focus is to explore 

these foundational presuppositions and consider their implications for scientific 

theory and practice  generally.  Through connections to  ideas from outside the 

natural sciences—namely from logic and the philosophies of science, perception, 

and language—I offer some alternative ways to reason about the issues I think 

these presuppositions suggest, and test these alternatives on the hard puzzle that 

malignant glioma presents to molecular oncology. 

The  presentation  is  (loosely)  structured  as  a  systems  analysis  over 

philosophy,  theory,  methodology,  and  application.  It  employs  concepts  and 

techniques that, in my view, motivate scientific pluralism as a useful attitude for 

dealing  with  the  challenges  of  translating  scientific  information  into  effective 

action  and  analyzing  science  generally.  Logical  methods  are  imported  as 

analytical tools for coping with information in ways that could be generalized 
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and differentially applied to problems that cut across multiple fields of inquiry. 

This importation motivates the discussion of theoretical and practical aspects of 

scientific  pluralism  throughout,  and  critical  consideration  of  how  scientific 

enterprise, progress, method, and knowledge could be seen differently. 

In sum, this work applies non-traditional methods to problems raised by 

traditional ones to motivate alternative styles of reasoning that may better suit 

the  complex  problems  that  arise  in  contemporary  scientific  and  theoretical 

research. These problems often require a plurality of techniques to solve because 

they involve many different forms of information,  and this thesis attempts to 

develop a strategy for understanding what data means, and how we can reason 

about acting on it to enact the changes in the world we intend. Getting clear on 

these matters involves examining the nature of scientific activity and rationality 

generally,  and understanding how it  is  we do,  or  could  do  science.  From this 

perspective we may have a better chance at understanding which methods may 

best realize many different scientific aims.  

!x



!1

1  Philosophy

The Information Problem

Science  has  always  prioritized  validity  and  soundness.  However,  it  is 

possible   that  given the  pace  of  data  generation achieved by next-generation 

sequencing  technology  that  science’s  classic  cognitive  schemas  are  growing 

increasingly hard to square with the contemporary research format of quickly 

evolving  and  highly  specialized  investigations  that  generate  terabytes  of 

information on a regular basis. (Illumina’s NovaSeq platform can sequence up to 

48 human genomes per run, see Illumina 2018) This situation is challenging for 

fields  such  as  molecular  oncology  and  others  that  aim  to  use  empirical 

discoveries  and  information  to  determine  practical  strategies  with  high 

probabilities  of  success  to  cope  with  complicated,  multivariate  natural 

phenomena. This aim is virtuous, however its realization is complex from the 

molecular level  up through the levels of information, decision, and action.

However complex, multivariate natural processes such as diseases can in 

principle  be  investigated  and  analyzed  into  actionable  and  scientifically 

interesting conclusions. With torrents of data generated by large next-generation 

sequencing projects, integration of molecular profiling into medical clinics, and 
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the rapid adoption of electronic health records, the data needed to make strong 

evidence-based  conclusions  about  scientific  direction  and  medical  action  are 

available,  however  the  accompanying analytic  methods  are  immature.  At  the 

same time, biology and biomedical research are quickly morphing from heavily 

empirical  disciplines  to  fields  that  can  benefit  greatly  from  advances  in 

information  science  and  computational  theory.  Such  advances  could  be 

immensely  helpful  in  wrangling  data  (Kandel  2011)   that  may  be   important 

drivers of scientific discovery.

Current efforts in bioinformatics rely heavily on methods imported from 

computer science, and these methods have made analyses such as genome-wide 

association studies (GWAS) possible. These studies can drill down to the level of 

single nucleotide polymorphisms (SNPs) between individuals,  and relate SNP 

status to traits such as eye color, or to conditions such as cardiovascular disease 

and dementia (Pickrell 2014). However, despite recent synergy between biology 

and computer science, there are many aspects of biological and biomedical data 

analysis that demonstrate the need for novel and intelligent approaches to data 

categorization, storage and manipulation. 

In  order  to  take  advantage  of  analytic  methods  to  produce  actionable 

conclusions about any phenomenon, one needs a thorough understanding of it. 

Achieving  this  understanding  not  trivial,  especially  for  complex  phenomena 
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such as  diseases,  which  entail  a  plurality  of   interacting  processes  at  several 

levels of organization. Tracking these phenomena and their different aspects to 

render them intelligible to scientific analysis is an important step in maximizing 

the  utility  of  computation  in  life  science,  biomedicine,  biotechnology,  and 

elsewhere. Part of taking this step diligently, in my view, entails getting clear on 

some  implications,  problems,  and  challenges  that  arise  from  having  a  vast 

landscape of information available for analysis. 

Scientific Semantics

Given the explosion of sequencing and other data generated by clinics and 

laboratories  since  the  Human Genome Project  (International  Human Genome 

Sequencing Consortium 2001), we have vast quantities of molecular information 

about which to theorize, but less of a grip on what kind of methods will render 

this information into maximally actionable conclusions—that is, into conclusions 

that hook onto the world such that we can readily change and reliably produce 

the effects we intend. In biomedicine, these effects are the treatment of disease 

and  the  improvement  of  health  through  biotechnological  methods  such  as 

targeted  therapy,  immunotherapy,  antibody  therapy,  and  molecular  profiling. 

These approaches and others are meant to provide scientists and practitioners 
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with the information needed to uncover causal mechanisms and exploit them, 

but  a  lack  of  systematic  understanding  about  how  exactly  these  general 

mechanisms  relate  to  instantiated  cases  is  a  limiting  factor  in  making 

revolutionary  progress  in  major  health  concerns  such  as  cancer,  Alzheimer’s 

disease, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. 

In  my view,  the tension in  this  situation can be framed in terms of  a  classic 

distinction in linguistics and the philosophy of language: we have access to the 

syntax,  or composition of these conditions at the molecular level as a result of 

sequencing technology, but much less of a grip on the semantics, or meaning and 

implication, of that data on theory and practice.

Molecular profiling has been espoused as a major step forward for precision 

medicine, with more breakthroughs promised to come:

“We have  already  witnessed  early  successes  of  precision  medicine.  These 
include, for example, the development of targeted treatments for cancer and 
cystic fibrosis that are effective in patients who share an underlying causal 
genotype…In  addition,  new  subtypes  of  disease  are  increasingly  being 
defined through molecular profiling of affected tissues,  an advance that is 
expected to lead to more focused design and testing of both therapeutic and 
preventative strategies — for example, treatments for specific subtypes of a 
disease,  or  behavioral  interventions  tailored  to  specific  subgroups  of  the 
population." 

(Precision Medicine Initiative 2015)

Despite at least a decade of this general research approach existing as translational 

research,  many  of  it’s  theoretical  and  practical  aspects  of  are  only  coarsely 

defined. For instance, what do individual molecular profiles tell us about disease 
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mechanisms  in  particular  versus  general  cases?  Changes  in  health  status? 

Quantified probabilities of treatment success? General answers to these types of 

questions  are  surprisingly  elusive  in  practice  compared  to  the  clarity  of  the 

material facts molecular profiling can provide. 

Through the identification of DNA sequences, molecular profiles suggest 

possible  treatments  based  on  individual  genomic  variation.  With  molecular 

profiling data,  a  clinician may,  for  instance,  decide to use or  avoid particular 

treatment  strategies  depending  on  the  impact  of  a  patient’s  unique  genetic 

variants  on  molecular  signaling  cascades  with  druggable  targets.  Molecular 

profiles suggest causal stories about individual disease etiology and progression 

that  should link up with causal  mechanisms discovered in the lab.  Thus,  the 

union  of  these  data  sets  in  principle  harbors  facts  about  oncogenesis  in 

individual (case-specific) and general (mechanistic) senses. By analysis then, one 

should be able to reasonably project, from present states of affairs—that is, from 

the  data—what  actions  are  warranted under  particular  circumstances.  That  is, 

relations  between  information  and  knowledge  should  tell  us  actionable  and 

theoretically  important  things  about  natural  phenomena  grounded  in  their 

material reality such that one can select the best possible course of action given 

present empirical facts and background information. 
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The move from information to action is essential to precision medicine, 

however the approach seems less precise in practice, and more like a guessing 

game than a scientific paradigm, at least to this writer. In medical practice, there 

are relatively weak expectations that molecular profiling will reveal something 

beyond  what  drugs  might  be  efficacious  in  some  cases  of  disease  for  some 

individuals. Molecular profiles are more often used as tools for identifying and 

qualifying patients for clinical trials with genomic inclusion criteria rather than 

as  maps  connecting  molecular  information  to  rational  action  they  should,  in 

theory,  be.  The  disposition  characteristic  of  the  active  paradigm  of  “rational 

medicine” is to act on the conclusions of large clinical trials, and use molecular 

profiling  results,  if  available,  as  supplementary  aides.  When  clinical  trial 

enrollment is not a factor, precision tactics tend to recede even further into the 

background of medical decision making. 

Changing  this  entrenched  disposition  seems  necessary  for  precision 

medicine  to  thrive.  Some  strategies  to  this  end  include  the  development  of 

“basket  trials”  in  which  patients  are  given  targeted  therapy  based  on  the 

presence of genomic variants in several different tissues of origin, however the 

method has raised more issues than it has solved—results have been arguably 

lackluster, and cannot get around many of the same road blocks of traditional 

strategies, such as tumor heterogeneity and misleading pre-clinical evidence that 
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doesn’t translate from the lab to the clinic. (Mardis 2018) The results of a recently 

published  basket  trial  of  the  EGFR  inhibitor  neratinib  (Hyman  et  al.  2018) 

embody  these  issues,  reporting  that  while  the  technique  was  helpful  in 

identifying genomic variables of significance for disease activity and progression, 

therapeutic  impact  was  significantly  lower  than  that  achieved  by  standard 

available therapies. 

This situation exposes that biotechnology and molecular medicine have a 

projection problem under the precision paradigm—there is a lot of information that 

should  clearly  guide action and predict  success,  but  it  doesn’t  necessarily.  The 

precision paradigm says to consider facts about individual genetics, environment, 

history and behavior in the context of a medical culture that generally prioritizes 

facts about groups  studied in large clinical trials over such facts.  This raises a 

logical  problem  for  getting  the  precision  project  comfortably  off  the  ground. 

Often,  investigations  that  would  furnish  the  data  sets  needed to  reach  high-

confidence conclusions about the importance and influence of individual-level 

factors  on health outcomes are studied as  secondary,  or  worse,  “exploratory” 

endpoints in clinical  trials  designed primarily for obtaining drug approvals—

these are often unpublished, buried in appendices of scientific papers, or kept at 

the chest  of  private companies.  This,  in conjunction with open questions and 

some skepticism about the precision project (Simon 2008, Bayer & Galea 2015), 
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substantially reduces the theoretical and practical force of precision methods in 

the minds of clinicians in practice, however clear efforts are underway to change 

this disposition. 

Research  institutions  and  biotechnology  companies  such  as  Memorial 

Sloan-Kettering (Cheng DT et al. 2015) and Foundation Medicine (Frampton et 

al.  2013)  are trying to render test  results  more accessible  and actionable with 

detailed output  reports,  however  those reports  often come too late  when the 

threat of  mortality is  high,  are perceived as incapable of supplanting medical 

intuition, or are sometimes too ambiguous or vague to confidently act on without 

significant auxiliary motivations and confirmation. If precision medicine aims to 

achieve paradigm status, the knowledge strategy of squaring group (type, kind) 

level facts with individual (token) cases may be untenable given the plurality of 

component  variables.  This  is  not  to  say  that  clinical  trial  results  should  be 

abandoned  or  supplanted  as  instructive  for  biomedical  decision  making,  but 

rather  that  increased  epistemic  and  practical  value  of  molecular  profiles  and 

bioinformatics generally is essential for the expansion of the precision paradigm. 

In  other  words,  precision  methods  and  information  need  to  be  contextualized 

existing methods and knowledge to truly become part of strategic inclinations 

and decision algorithms. To understand how this contextualization process could 
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get going, in my view, we have to get clear on the general relations that hold 

between information, knowledge, and action.

To this end, import of another concept from linguistics and the philosophy 

of language is useful: pragmatics is the study of linguistic acts and the context in 

which they are performed (Stalnaker 1970). I think the pragmatic approach can 

be  applied  in  science  in  a  similar  way  as  the  syntax/semantics  distinction 

discussed above.  If we consider scientific and medical actions from the outside—

that is, in the practical and theoretical contexts in which they are performed—

success rests on the way we interpret new and existing information against the 

background  data, or common ground (Stalnaker 2014) connecting particular cases, 

theories, and evidence. The ability to act on information with high confidence, in 

my view, gears into our grasping the meaning and implications of that data in 

relation to existing knowledge, empirical facts, and new discoveries. 

Since  information  plays  a  key  role  here,  we  need  a  definition:  With 

Stalnaker  (1998)  I  take information to be something “carryable,  transmittable, 

and analyzable” and that,”one thing contains information about another if there 

are causal and counterfactual dependencies between the states of one and the 

states  of  the  other.”  Relating  forms  of  information  is  a  knowledge-based 

theoretical task that calls for new ways to discover, explore, and understand the 

relations  among  data,  facts,  aims,  and  action,  in  addition  to  causal  and 
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counterfactual dependencies and their effect on knowledge states. An approach 

that  aims  to  pin  down  the  implications  of  these  relations  should,  in  theory, 

maximize  contact  with  reality  (Chang  2012)  and  thus  be  theoretically  and 

practically useful.  That  is,  if  we understand information and action with this 

level  of  relational  precision  in  a  way  that  is  consistent  with  our  theoretical 

orientations and practical aims, our knowledge states can become finer grained 

in the setting of expanding databases and the normative or disciplinary concerns. 

Modern  medical  reasoning  is  already expected to  continually  adapt  to 

perpetual  discovery.  It  now  regularly  considers  experimental  conclusions  in 

clinical  situations,  and  clinical  concerns  can  exert  influence  on  experimental 

design.  This  dynamic  is  essential  to  translational  research—practitioners  and 

scientists must weigh the possible and necessary implications of stipulated trials 

and  experiments  against  observations,  case-specific  histories,  first  and  third-

person accounts, new discoveries, institutional expectations, expert opinion, and 

community consensus to estimate probabilities of success and strategically make 

decisions.  Scientific  reasoning  considered  in  this  way  has  a  decisively  analog 

character—individuals must parse large quantities of different types of data with 

little guidance or systematic theory of how to sort, relate, and draw conclusions 

from mosaics of changing information. The cognitive load of this task is quickly 

outrunning  human rational  capacity,  making  methods  for  arriving  at  reliable 
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conclusions and making strong predictions increasingly desirable, and perhaps, 

necessary. 

There are significant motivations for designing methods that  can make 

crunching data  more  compatible  with  human cognitive  ability.  The  ability  to 

query relations among large bodies of medical literature, high numbers of patient 

cases, and molecular facts for theoretical and practical reasons would both clarify 

and sharpen decision-oriented tasks  and uncover  actionable  patterns  in  data. 

Efforts  are  launched  and  underway  to  develop  such  tools  in  oncology  by 

curating genomic information and clinical data (Cerami et al.  2012, Gao et al. 

2013; see cbioportal.org), however their development and data curation processes 

can be slow and cumbersome. Genomic functional annotations are curated by 

hand, mostly by post-docs, and development does not typically include parallel 

development  of  decision  making  aides.  However,  well-funded  efforts  are 

underway  to  improve  the  quality  and  relevance  of  these  clinical-biological 

knowledge  databases  (e.g.  Chakravarty  et  al.  2017),  and  major  technology 

companies (e.g. IBM, Google) are putting their analytics technologies to the test 

in innovative collaborative efforts to process and categorize biomedical data.

In parallel with these and other bioinformatics developments in the last 

decade, advancements in analytics, machine learning, and artificial intelligence 

have changed the way we interact with, process, access, think about, and behave 

http://cbioportal.org
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with respect to information. Data is constantly collected about human behavior 

for  specific  purposes,  and  analytical  tools  are  able,  from  huge  torrents  of 

constantly expanding and changing data,  to mine insights about innumerable 

business  and  industrial  concerns.  Crucially,  machine  learning  technology  can 

understand  the  data  it  is  designed  to  analyze,  and  so  can  adapt  to  changing 

patterns in the data as they happen.  AI systems thus know  our wants,  needs, 

preferences, and activities based on the data we generate by acting. Although 

digital,  artificial  intelligence  and  machine  learning  are  modeled  on  our  own 

patterns  of  thought  and,  coincidentally,  the  recursive  observation-experiment 

loop that  defines the scientific method. That is,  there is  a  cognitive  consistency 

between human and machine learning methods. We do, after all, call it artificial 

intelligence. 

If  we can unleash these digital  analytic  tools  on disparate  data  sets  in 

science and medicine, the possibilities of what could be achieved are staggering. 

Empirically oriented computation that leverages artificial intelligence and human 

thought  patterns  together  should  in  principle  cope  with  vast  quantities  of 

information and evidence whose synthesis exceeds human cognitive reach, and 

so  opens  up  wider  fields  of  possibility  and  implication  that  can  be  used  to 

determine action. So much was already made a public spectacle in 2011 by IBM, 

when their question answering computer system Watson appeared on Jeopardy! 
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and handedly defeated two human champions. Importantly, Watson weighed his 

decisions based on top candidate responses deduced from the source data he was 

primed with prior to the competition (Figure 1). 

Figure 1:  IBM’s Watson weighing a decision on Jeopardy!  On the nationally televised game 
show Jeopardy!, IBM’s question answering computer system Watson (center) gained and held a 
commanding  lead  against  human  champions  Ken  Jennings  (left)  and  Brad  Rutter  (right). 
Watson’s weighing strategy, or “thought process,” for response selection was shown at bottom.

Watson  has  since  moved  from  primetime  trivia  to  natural  language 

processing  and medical  literature  analysis.  It  has  now “read”  more  scientific 

papers than any human—and has become a relational database and catalogue of 

medical syntax unrivaled by any other single source of information in science or 

elsewhere. Since Watson is a language-based system, it knows what experts have 

said about diseases, mechanisms, methods, and collected data in their published 
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work. What Watson doesn’t know is what this expansive body of information 

means in human, consequential, causal, or counterfactual terms (cf. Searle 2011). 

Watson  is  a  syntactical,  deductive  whiz,  however  we  retain  the  semantic, 

inductive advantage by virtue of our cognitive ability to interpret information in 

conjunction with past experience, present knowledge, and context to act—we are 

pragmatic  experts.  A crucial  point  here,  with  connection  to  the  philosophy of 

language,  is  that  Watson  and  similar  systems  do  not  necessarily  grasp  the 

pragmatic implicature (Grice 1975) of conceptually related bodies of information. 

That  is,  the  significance  of  particular  relations  against  a  shared  body  of 

contextual background thoughts, beliefs, information or other common ground 

elements. We deploy linguistic-computational algorithmic systems like Watson 

over linguistic information we’ve generated ourselves, and so such systems are 

only as effective as our queries to them are precise. 

What matters to us are the implications of what we’ve said in the past 

about drugs, disease, genes, individuals,  and groups in the context of present 

theoretical  challenges  and  practical  needs.  Understanding  the  connections 

between  this  knowledge  and  data  is  the  central  aim  of  efforts  such  as  IBM 

Watson Health, which promises to apply the cutting edge cognitive computing 

power of Watson to massive amounts of disparate health and scientific data, in 

principle  surmounting  many  of  the  big  challenges  bioinformatics  through 
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natural language processing (Chen et. al 2018). With high throughput sequencing 

and analytic technologies, we can process information in ways unrealizable in 

human  minds  and  brains  to  sharpen  inquiry  and  make  more  accurate 

predictions.  This  idea  is  not  new  (Goodman  1954),  however,  what  the  most 

versatile  and  reliable  strategies  for  translational  data  analysis  are,  at  least  in 

biomedicine, undecided, and there is probably not a single approach that will 

cover  all  potential  applications  and  research  challenges.  Getting  clear  on  the 

nature  of  the  cognitive  and empirical  frameworks  we use  in  research should 

signal  a  path  toward  more  general  strategies  that  could  relate  disparate  yet 

conceptually connected (and constantly expanding) bodies of information with 

reference  to  theoretical  aims,  practical  motivations,  existing  knowledge,  prior 

experience, and contextual common ground. 

In the rest of this work, I aim to sketch an approach to inquiry and data 

analysis, with the intent of contouring a logic that can parse multiple different 

types of information with enough flexibility to adapt to situations in real time. It 

is precisely here where concepts and strategies from formal and philosophical 

logic  are  useful—crucially,  they  allow  one  to  view  and  treat  information 

differently and abstractly. This, in my view, permits richer analyses into possible 

implications of information and knowledge relations in interesting ways. Such 

techniques are potentially very useful for addressing challenges of translational 
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research generally, generating new perspectives on hard problems, and taking 

harder lines on new ones. The next section aims to get a better handle on the 

mechanics of scientific activity and thought in general so that we may use this 

understanding as a background for reasoning about the design of logical analytic 

methods.
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2  Theory

Perception, Paradigms and Pluralism

The motivating thesis behind what follows is that if analytic methods are 

theoretically reflective of human patterns of thought and knowledge dynamics, 

they  are  that  more  likely  to  function  as  we  expect  them to,  and  thus  guide 

effective  action  in  practice.  Phenomena  are  grasped  in  perception  with  a 

fundamental figure-ground organization. (Wertheimer 1912, Wageman 2012) They 

are in the world, yet perceived differently across individuals due to the unique 

perceptual milieu of individual perspectives on the world—that is, differences in 

cognitive background, knowledge, experience, training, and social embededness 

that  structure  perception  (Merleau-Ponty  1945).  The  epistemological  problem 

that  arises  from  this  phenomenological  reality  is  posed  by  Kuhn  (1962)  in 

questioning  the  validity  of  an  observation  language  directly  related  to  sense 

impressions and analyzable in standard empirical ways:

“…[M]odern psychological experimentation is rapidly proliferating phenomena 
with which that theory can scarcely deal. The duck-rabbit shows that two men 
with the same retinal impressions can see different things; the inverting lenses 
show that two men with different retinal impressions can see the same thing. 
Psychology supplies a great deal of other evidence to the same effect…” 

(Kuhn 1962, §X)
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Here, Kuhn is generally puzzled about the relationship between perception and 

knowledge in scientific contexts. Putting Kuhn’s point differently, we might say 

that perception has a world-dependent content  and individual-dependent rendering. 

This distinction is useful for thinking about scientific activity and rationality if 

we understand empirical observation and classification as a specialized cases of 

this general perceptual dynamic (Figure 2).

 

Figure  2:  Epistemologically  significant  perceptual  phenomena.  (A)  The  duck  rabbit  is  an 
unstable perceptual figure flipping between duck and rabbit. Which one is it? Can we say, both? 
(B, C) Normal perception of an object via retinal impression that results in the experience of a 
tree.  An  experimental  condition  with  inverted  goggles  gives  the  eye  a  different  (inverted) 
stimulus, and also produces the perception of a tree. Sources: A: public domain, B & C: author’s 
drawings)  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For example, a biologist and a physicist may study the same molecular 

phenomenon,  yet  explain  it  in  different  terms  or  concepts,  and  so  too  for 

scientists  within  the  same  discipline.  Thus,  observational  language  stands  in 

tension with theoretical language that talks about unobservable properties, events 

or  other  scientific  constructs,  such  as  atoms  or  electrons  (Blackwell  2004).  If 

scientists  can  observe  the  same  phenomenon  yet  classify  it  differently,  the 

conditions for the possibility of this situation is epistemologically and practically 

interesting.  It  suggests  that  convergent  observations  with  valid  divergent 

classifications may be fundamental to science and scientific knowledge. 

Complex natural  phenomena such as  perception,  wave-particle  duality, 

genomic  regulation,  health  and  disease,  cognition,  behavior,  agency,  and 

consciousness  resist  epistemologically  monistic  rational  treatments,  signaling a 

deficiency in such methods for these research objects. If the aim of science is to 

maximize informational contact with reality to learn as much as possible (Chang 

2012),  scientific  pluralism  is  key  to  understanding  how  phenomena  can  be 

cubically observed and differentially classified. Under pluralism, like in Kuhn’s 

musings, two individuals may have the same knowledge that p but validly differ 

in knowledge of how p is the case. One analysis is not necessarily better or worse 

than  another,  and  they  together  condition  a  richer  explanation  of  the 

phenomenon  being  observed.  Cognition,  for  example,  has  biological, 
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neuroscientific, psychological, computational, and philosophical aspects, and this 

plurality of approaches taken together explains the phenomenon differently than 

any  single  approach  or  unified  (monistic)  or  “interdisciplinary”  theory.  This 

dynamic between disciplines or approaches targeting the same phenomena maps 

onto  the  perceptual  distinction  between  world-dependent  content  and 

individual-dependent rendering suggested above, and is consistent with Kuhn’s 

worries  about  the  foundations  of  scientific  activity  and  knowledge.  Scientific 

theories  and observation are  contingent  on phenomena out  in  the  world,  and 

theories about them depend on one’s field and purpose, intentionality, and the 

rules of logic. 

Any science has a domain and a background on which observations are 

found and assertions made—that is, a set of attractors toward that bring its target 

phenomena,  theoretical  presuppositions,  logical  apparatus,  and  common 

knowledge  into  view.  Sciences   can  share  attractors,  and  attractors  can  play 

different  roles  in  different  fields  with  divergent  theoretical  and  practical 

orientations. Multiple scientific fields and scientists within single fields can thus 

approach the different aspects of a phenomenon concurrently (Figure 3A), and 

reach divergent conclusions about it. In my view, this suggests that science is a 

networked  plurality  of  theories  and  knowledge  mutually  concentrated  on 

phenomena (Figure 3B), rather than a field of competing, independent or isolated 
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frameworks  after  the  singular  set  of  best  explanations.  Under  this  kind  of 

scientific  pluralism,  theories  and  explanations  may  differ  within  and  across 

disciplines,  but  together  they  constitute  a  set  of  contact  points  with  reality 

through which information and knowledge can be organized.

Figure 3: Phenomena and knowledge networks. (A) Pictorial representation of a phenomenon 
with multiple aspects (A-M) open for investigation. (B) Epistemic network constituting scientific 
knowledge  of  the  phenomenon  (P)  through  a  plurality  of  approaches  (A-M)  targeting  the 
phenomenon (lines) that are independent, yet connectable (dashes). 

Pluralism  challenges  what  we  traditionally  think  about  how  science 

works, especially in contexts where disciplinary lines may blur, implications may 

cut across multiple domains, and anomalies don’t lend themselves any particular 

established approach. That is, when observations made in scientific contexts are 

bound to admit to more than one rationally justified treatment (Chang 2012), and 

so are inherently open to multiple analyses. In this context, monist inclinations 
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toward  theoretical  unity  and  singular  explanations  lose  their  force  to  rich 

explanatory  models  that  take  multiple  perspectives,  theories,  datasets,  and 

differential conclusions into consideration. Furthermore, since pluralist models of 

explanation are rich in this way, they minimize logical dependence on any single 

set of evidence or method. 

Scientific  pluralism  also  challenges  traditional  conceptions  of  scientific 

explanation  without  undermining  its  force.  Under  pluralism,  scientific 

explanation and knowledge can be treated like networks rather than a collection 

of  isolated  conclusions.  Importantly,  pluralism  does  not  necessarily  pursue 

fundamental  theories,  singular  answers,  or  prioritization  of  one  theoretical 

framework over another—it is motivated toward broader explanatory modeling. 

Thus,  it  also  diverges  from  traditional  views  about  scientific  structure  and 

progress,  evidenced by its motivation of some unconventional and interesting 

accounts  of  science and knowledge,  such as  Dupré’s  (1981,  1993)  promiscuous 

realism  by which all scientific kinds are natural kinds and Fayerabend’s (1975) 

epistemological  anarchism by which all  possible  means of  knowledge gathering 

should be pursued and developed concurrently. These more radical perspectives 

may  be  important  understanding  the  nature,  content,  and  advancement  of 

science,  especially  as  research  becomes  more  complex,  multidisciplinary, 

computational, and information-driven. 
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 Since  pluralism  holds  that  no  theory  or  discipline  necessarily  makes 

stronger contact with reality than any other,  it  is  the network of theories and 

explanations about a phenomenon that best accounts for it. It follows from this 

structure  that  science  can  in  principle  sustain  coexisting,  independently 

developing lines of inquiry without issue, for no line of inquiry aims to replace or 

explain away others. Instead, explanations and theories from independent lines 

of inquiry all refer to the target phenomenon, constituting a knowledge network 

about it in which perspectives can interconnect and interact as a result of shared 

aims, but still exist, function, and develop independently to generate knowledge 

(cf. Figure 3B above).

If the structure of science is networked and dynamic as I’ve suggested, 

pluralism challenges rational inclination toward unified scientific theories and 

blind  adherence  to  accepted  scientific  narratives.  It  also  helps  cope  with  the 

underdetermination of scientific theories by evidence (Quine 1951). Theories are 

said to be underdetermined when we do not have access to all the evidence of a 

phenomenon (Harding 1976). According to the Quine-Duhem thesis, no theoretical 

claims  can  be  confirmed  or  denied  in  isolation  from  related  and  auxiliary 

hypotheses in the context of incomplete evidence or information. If this is the 

case  in  science  (which I  believe  it  is),  scientific  theories  are  always  subject  to 

revision in light of new evidence and are therefore evolving, malleable, dynamic 
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things.  This  point  about  the  nature  of  science  itself   and  challenges  the 

explanatory  sufficiency  of  any  singular  theory  or  monistic  epistemological 

strategy for explaining natural phenomena and doing science. Without monism, 

the  foundations  of  science  and  scientific  progress  diverge  from  traditional 

theories,  and  this  departure,  in  my  view,  can  help  address  the  information 

problem and problems like it.

The Computational Paradigm

In  Structure,  Kuhn  argues  that  science  proceeds  by  the  succession   of 

paradigms, or sets of concepts and assumptions used by scientists to do the work 

they  do.  He  defines  paradigms  as,  “universally  recognized  scientific 

achievements  that  for  a  time  provide  model  problems  and  solutions  to  a 

community  of  practitioners.”  On  Kuhn’s  view,  evidence-based  explanations 

become  scientific  orthodoxy  until  enough  anomalous  observations  cause  a 

paradigm shift  of theoretical and methodological revision or replacement. After 

the shift, scientists see the world differently than under the previous paradigm.

Paradigm  shifts  are  thus  driven  by  community-wide  changes  in 

perception, action, method, and language. They are also driven by community-

wide changes in method. When a new instrument or technique allows scientists 
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to approach problems differently, the form of experimental design, observation, 

and  results  shift  accordingly  and  lead  to  new  or  revised  explanations  and 

theories.  Classic  examples  of  scientific  paradigm  shifts  include  Newtonian 

mechanics  to  quantum  theory  in  physics,  phlogiston  to  oxygen  chemistry, 

behaviorism in psychology, and molecular biology in life science. Kuhn argues 

that science progresses in phases of paradigms, alternating between what he calls 

normal science, essentially to puzzle-solving, and revolutionary science, conducted 

in periods with mounting anomalies. In revolutionary periods, new paradigms 

are adopted, and normal science under the new paradigm continues until the 

next phase of revolutionary science and subsequent paradigm shift (Figure 4).

Figure 4: Kuhn’s (1962) Structure of Scientific Revolutions. Kuhn argues for a historical, temporal, 
and  phased  conception  of  scientific  progress  characterized  by  periods  of  normal  and 
revolutionary science that lead to recurrent paradigm shifts and new methods and perspectives 
developed to cope with gradually accumulating anomalies.

If  there is anything resembling a paradigm shift happening now in life 

science, computational biology is a top candidate. Statistical and computational 

methods  are  being  adapted  for  use  in  biology,  yielding  interesting  results  in 
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molecular science. Importantly, such methods help wrangle large quantities of 

data and uncover, for example, key molecular events in disease processes based 

on  clustered  expression  data  visualized  as  heat  maps  (Cheng  et  al.  2012). 

Interestingly, biological reasoning is not as aggressively or reflectively applied in 

the design of  quantitative tools  for  analyzing biological  data.  Rather,  existing 

computational methods are applied to biological problems and data rather than 

being  developed  in  context  with  those  problems  in  mind,  construing 

computational  biology  as  more  of  an  applied  computer  science  than  a 

quantitative life science. This could be problematic, as it passes over the ground-

floor  integration  of  basic  facts  about  living  systems  into  things  like  disease 

modeling, bioinformatic analyses and other methods. This may leave algorithms 

unconstrained by common knowledge relations, and thus further from the actual 

conditions of the world they are meant to measure.

The  main  point  here  is  that  there  is  an  important  difference  between 

applying  statistical  and  computational  methods  to  biomedical  data  and 

designing such methods from the ground up. Sociologically, this is demonstrated 

by an intellectual and cultural gap between the biological and computer sciences. 

Bioinformatics,  computational  biology,  and  systems  biology  bridge  the  two 

fields, however the individuals representing and teaching in these fields are often 

computer  scientists  or  statisticians  doing  their  work  on  a  new  type  of 
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information, or biologists adding information scientists to their laboratory teams 

to  analyze  data.  This  may be  because  computational  fields  are  advancing by 

solving biological problems and the converse is less true. Regardless, biological 

data  continues  to  accumulate  rapidly  with  the  rising  use  of  sequencing 

technology in medical and research centers worldwide, and methods are needed 

to wrangle it against existing knowledge to render the information actionable. 

Kuhnian sociological  worries  aside,  taming and learning from the data 

deluge  by  relating  new  information  to  what  we’ve  already  discovered  is 

necessary for scientific progress, however it may be defined. The integration of 

informatics strategies into the biological sciences opens the door to a new kind of 

biological thinking that I think counts as progress. Critically, the entities being 

studied are no longer only found on the laboratory bench—they are now also 

represented in data that can be analyzed to reach new conclusions. With the rapid 

development of next generation sequencing technologies over the past decade, 

research  institutions  are  ramping  up  sequencing  facilities  and  creating 

specialized research clusters dedicated to biological data storage, management 

and analysis  (e.g.,  Columbia University,  Stanford University,  Memorial  Sloan-

Kettering  Cancer  Center,  New  York  Genome  Center).  Simultaneously,  new 

government  initiatives  have  incentivized  the  transition  to  electronic  medical 

records, creating a different, second information wave that occupies even more 
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space than sequencing data in the form of electronic medical records. Adding 

another dimension, wearable biometric devices represent another living body of 

information,  and  a  method  for  data  collection  that  ought  to  be  used  in 

conjunction with more traditional methods. On the sequencing side, there is an 

enormous need for the interpretation of stored information about DNA, RNA 

and  proteins.  On  the  health  data  side,  there  is  an  equal  need  for  organized 

representation of information. Thirdly, sequencing data needs relating to clinical 

data  to  be  rendered  practically  meaningful  and  informative  for  action.  The 

varying forms of information involved in this kind of analysis warrant a logical 

method capable of dealing with those forms.

With  the  wealth  of  sequencing  information  now  available  there  are 

important  questions  surrounding  the  best  way  to  store  and  make  this 

information  available  for  use  by  biomedical  and  clinical  communities.  For 

example, researchers addressing problems in genomic analysis may be collecting 

data about patients with a particular disease at medical centers across the globe. 

The  possibilities  of  using  and  analyzing  this  global  body  of  information  are 

scientifically  exciting  and  medically  important,  however  they  may  be 

undermined by incongruent methods and standards of data collection, storage 

and dissemination across institutions or research programs. These processes have 

not  been  generalized  or  standardized  to  drive  discovery,  and  as  such, 
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investigative efforts may remain individualized, diminishing the possibility for 

effective  interrogation  and  manipulation  of  large,  rich  data  sets  containing 

clinical and molecular information. Moreover, it is an open question as to what 

the  best  analytic  approaches  may  be.  With  much  speculation  around  what 

sequencing  data  can  means  practically  in  different  medical  and  scientific 

contexts, the instability of biomedical analytics could be approaching stagnation. 

I  think  the  situation  is  less  dire,  yet  still  in  need  of  critical  examination— 

methods  are  computational,  but  they  may not  be  optimizing  action.  Perhaps 

what is needed are refreshed rational directions and general consideration of the 

knowledge dynamics that condition confident action. One way toward these new 

directions is, I think, with pluralism (see Figure 5).

Figure  5:  Pluralist  theory  of  knowledge.  (A)  Scientific  disciplines  in  isolation.  Monistic 
knowledge strategies attempt to transpose information between domains without explanatory 
loss. (B) Pluralist knowledge strategy as an epistemological tool. Explanations link information 
across disciplines, or can be localized, e.g. within biomedicine with, for instance dimensions for 
molecular profiles, imaging results, treatments, and outcomes.
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Above  I’ve  argued  in  favor  of  scientific  pluralism  as  a  philosophy  of 

science that  understands science’s  epistemic structure as a  network with self-

sustaining yet interconnected plurality of results and conclusions taken together 

constitute scientific knowledge. Like philosophical scientific pluralism, practical 

pluralism about data  would accept that no type or piece of information should 

weighted, prioritized, privileged, or necessarily eliminated over another, and the 

aim is enriched, dimensional analysis—data sets should be maximized for breadth 

and cross-sectional analyses pursued to make new discoveries. This is possible 

with a pluralist epistemological strategy.

In the next  section,  I  unpack some of  the practical  implications of  this 

position  by  exploring how pluralism about  classifying phenomena,  collecting 

data,  constructing  databases,  and  analyzing  information  opens  up  new 

possibilities for  scientific inquiry through logical computation. With this type of 

analytic method, information can be treated in new and creative ways since data 

can be seen differently depending on what relations are being queried. With this 

approach,  a plurality of  investigations with different practical  aims could use 

shared,  open  data  sets  to  test  hypotheses  and  generate  broader  and  deeper 

knowledge about natural phenomena. By this method, creative ideas about what 

bodies of information could demonstrate by relational analysis can drive scientific 

inquiry, observation, and classification, allowing  investigators to work from the 
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phenomena  up  and  the  hypothesis  down,  with  the  limits  of  inquiry  only 

constrained by the sharpness of our questions. With the rapid maturation of data 

science, analytics, and artificial intelligence, the possibilities realizable through 

such  methods  are  dizzying.  The  next  section  takes  this  philosophical  and 

theoretical hypothesis and tests it with molecular oncology to show how it might 

get going in practice. We’ll turn to the mystifying puzzle of malignant glioma in 

molecular neuro-oncology. Molecular oncology faces difficult challenges under 

precision medicine due to its complex and multivariate subject matter. We’ll start 

with  a  general  assessment  of  the  challenges  in  molecular  oncology,  then 

transition  to  the  case  of  malignant  glioma,  and  specifically  its  most  deadly 

variant, glioblastoma multiforme.
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3  Method & Application

Glioblastoma multiforme

Cancer  is  a  disease  with  many forms  that  occur  with  some frequency 

across  nearly  all  mammalian  tissue  types  (National  Cancer  Institute  2018). 

Although the clinical phenomenology of the disease exhibits wide variation, the 

many different observed forms of the disease harbor overlapping genetic and 

molecular pathologies that cut across disease types, and many cancers share the 

same or similar molecular pathologies despite differing tissues of origin (Harris 

& McCormick 2010).  In this  sense,  cancer  exhibits  a  natural  kind of   multiple 

realizability (Putnam 1967,  Fodor 1974) in which certain material  properties or 

states are implicated across multiple related but distinct phenomena—different 

cancer  types  share  genetic  variations  and gene expression dynamics,  and the 

latter  further  depend  on  cell  signaling,  transcription  factor  action,  and  other 

molecular  phenomena.  Further,  these  phenomena  all  influence,  and  are 

influenced  by,  individual  genetic  background,  exposures,  and  environmental 

conditions. On top of this complexity, individuals with the same cancers may 

also have different molecular profiles and respond differentially to treatments, 

making  the  delineation  of  clinical  diagnostic  categories  and  generalized  care 
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algorithm construction difficult.  This is  acutely the case in neuro-oncology,  in 

which malignant glioma presents some of medicine’s most difficult diagnostic 

and therapeutic challenges.

Among  brain  tumors,  malignant  gliomas  and  their  Stage  IV  variant 

glioblastoma multiforme (GBM) comprise 17,000 new cancer diagnoses per year 

and, although rare, these tumors are associated with, “dismal prognosis and poor 

quality of life”: 1-year survival rates of 35.7%, and 5-year survival rates of 4.7%. 

With glioblastoma accounting for 82% of all malignant gliomas, neuro-oncology 

is faced with a deadly force for which no strong or reliably effective therapeutic 

strategy  exists  (Omuro  &  DeAngelis  2013).  It  is  in  puzzles  like  these  where 

biotechnology and precision medicine are hoped to make a difference. 

Malignant  gliomas  form  as  a  result  of  a  multistep  process  involving 

sequential  and  cumulative  pathological  genetic  alterations  resulting  from 

internal and external forces. Adding again to the complexity, glioblastomas are 

histologically  and  genetically  heterogeneous,  and  have  at  least  4  different 

subclasses  with  varying  genomic  alterations  according  to  genome-wide 

expression studies: classical, mesenchymal, proneural and neural (Thomas et al. 

2014,  Table  1).  Many  of  these  alterations  cut  across  GBM  subclasses,  and 

additional rare or novel mutations also appear in some cases. 
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Table 1: Genomic complexity of glioblastoma multiforme (GBM) subclasses.  
Synthesized from Omuro & DeAngelis 2013, Thomas et. al 2014, and Lombardi & Assem 2017  
 

Classical,  mesenchymal,  proneural,  neural,  and  G-CIMP  tumor  classes  harbor  different 
alterations that influence disease severity, progression, and treatment susceptibility or resistance. 
Notes  and  abbreviations:  EGFR vIII  mutation prevents  binding of  any known ligand;  G-CIMP, 
glioma CpG island methylator phenotype 

Therapeutic options for GBM are limited, but are expanding as a result of 

translating molecular discoveries made in the lab into clinically useful treatment 

strategies (Omuro & DeAngelis 2013). It has been discovered, for instance, that 

the  most  common  site  of  mutation  in  primary  glioblastoma  is  within  the 

Classical Mesenchymal Proneural Neural G-CIMP

Chromosomal 
abnormalities

Chr. 7 
amplification


Chr. 10 
deletion

Locus 
variations

Ink4a/ARF  
locus deletion

Single gene 
variations

EGFR 
amplification/
point or vIII 
mutation


TP53  
absence of 
mutation

NF1  
mutation/deletion


PDGFRA and 
nearby RTKs 
High amplification


TP53  
mutation

PDGFRA 
alteration 

IDH1 
mutation 

TP53 
mutation 

NF1 
deletion/
silencing 

PTEN  
point 
mutation

EGFR 
over-
expression

IDH1  
alterations


G-CIMP 
alterations

Expression 
dynamics

CHI3L1, MET, 
and genes in TNF 
and NF–κB 
pathways 
High expression

TNF  
super-family 
expression

Neuronal 
markers 
expression/
over-
expression

Epigenetic 
variation

MGMT 
hypermethylation
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promoter  region  of  the  telomerase  reverse  transcriptase  gene,  TERT,  which 

increases RNA expression thought to be an important contributing factor to GBM 

development.  These mutations are also found in lower grade gliomas, and in 

those cases, are mutually exclusive with mutations of ATRX and IDH1 (Thomas 

et.  al  2014).  Complex  molecular  relations  such  as  these  are  common  in 

glioblastoma, thus complicating molecular analyses. Clinical complexity exists as 

well: non-cancerous syndromes may mimic malignant glioma on neuroimaging, 

requiring novel techniques for diagnosis (Omuro & DeAngelis 2013, Figure 6).  

Figure 6: Neuroimaging studies of glioblastoma multiforme. Typical glioblastoma features on 
magnetic resonance imaging (MRI) studies used in the initial evaluation of a suspected brain 
tumor. Special techniques (B-C) must be used to see the tumor at all (A), and the extent of 
infiltration of tumor tissue into the healthy brain (from Omuro & DeAngelis 2013).
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In these last few pages we’ve only scratched the surface of glioblastoma’s 

complexity. Due to its complicated nature, GBM was the first solid tumor type to 

undergo  comprehensive  genomic,  epigenetic,  transcriptional,  and  proteomic 

analysis by The Cancer Genome Atlas (TCGA) effort. From this effort, it has been 

determined that over two-thirds of primary glioblastomas harbor mutations or 

amplifications  of  receptor  tyrosine  kinase  (RTK)  and  growth  factor  receptor 

(GFR) signaling that lead to downstream activation in the PI3K-Akt-mTOR gene 

pathway affecting gene transcription, leading to cell survival (Cancer Genome 

Atlas  Research  Network  2008,  Verhaak  2010).  As  a  result  the  RTK  (receptor 

tyrosine kinase) and GFR (growth factor receptor) pathways have been targeted 

as fruitful for therapeutic development, as drugs with similar mechanisms have 

been proven effective in other cancer types (Padfield et al 2015). Unfortunately 

for glioblastoma, trials testing the use of tyrosine kinase inhibitors of EGFR and 

PDGFR,  mTOR,  Akt,  and  PI3K  have  reported  disappointing  results  (Omuro 

2007). Aside from biological challenges such as the blood-brain barrier and tumor 

microenvironment,  operationally  most  of  these  trials  did  not  pre-select  for 

patients  with  genomic  variations  susceptible  to  the  targeted  therapies  they 

received  (Thomas  2014).  If  precision  medicine  is  to  grow  as  a  paradigm, 

opportunities like these must not be missed as a result of not knowing the clinical 

significance  of  particular  variations  in  therapeutic  contexts:  better,  systematic 
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screening  methods  were  incorporated  into  trial  designs,  the  “right”  patient 

population could have been selected and the trial results could have turned out 

differently. As mentioned earlier, basket trials in oncology are attempting to seize 

opportunities to study variants in context,  however early results indicate that 

there are still connections between pre-clinical evidence and medical action that 

remain to be understood. 

Neuro-oncology is not alone in needing to cope with complex phenomena 

with a plurality of molecular events at their core. Biology has been coping with 

these  types  of  phenomena  for  over  a  century.  For  instance,  pleiotropy,  the 

phenomenon  of  a  single  gene  influencing  multiple  traits  (Plate  1910),  and 

polygenic inheritance, when one trait is influenced by  multiple genes (East 1910 & 

Nillson-Ehle 1909 in Stearns 2010), bookend a spectrum that captures the worry. 

Put generally, and in context again with the philosophy of language, there are 

several  kinds of ambiguity  that arise in biological systems (Hodgkin 1998 via 

Empson 1930) at the genetic and molecular levels that make systematic analysis 

challenging. Pleiotropy for instance is a complex variable in the sense that it has a 

single  input  that  generates  a  plurality  of  outputs  clustered  together  through 

scientific  and  medical  classification.  There  is  a  palpable  lack  of  analytic 

approaches  with  which  existing  data  and  present  knowledge  are  analyzed 

together  to  systematically  project  outcomes  of  possible  events  and  courses  of 
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action.  These  types  of  analyses  have  a  high  translational  utility  for  both 

developing hypotheses and making decisions.

One  road  block  in  formalizing  and  categorizing  biomedical  data  and 

maximizing translational utility lies in the complex causality that constitutes a 

biological fact. This much is illustrated by the analysis of glioblastoma above, but 

there are many other examples. For instance, polygenic traits such as height and 

skin color arise from the action of multiple genes in different body systems acting 

in a (presently unknown) temporal sequence. The underlying complexity of these 

traits is informatically dense such that achieving a full understanding of how, for 

example, an individual’s height is determined, is no small feat. The situation is  

even  more  daunting  in  complex  and  poorly  understood  diseases  such  as 

glioblastoma,  and  other  major  contemporary  health  concerns  such  as 

Alzheimer’s disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), 

and Parkinson’s  disease,  where  molecular  explanations  are  thought  to  be  the 

rate-limiting step in developing effective treatments. These explanations, in my 

view, may be more easily attainable through the logical approach to genomics I’ll 

now begin to sketch.
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Logical Genomics

The application of formal and philosophical logic to information problems 

is one way to develop methods that can drive discovery about disease and other 

complex  biological  phenomena  such  as  glioblastoma  and  pleiotropy.  As 

mentioned above, over two-thirds of GBM cases have genomic alterations and 

corresponding signaling defects in receptor tyrosine kinase (RTK) and growth 

factor  receptor  (GFR)  pathways.  This  broad  state  of  molecular  affairs  can  be 

represented by the conditional proposition  p ⟶ q  (if p then q), and specified for 

the context of neuro-oncology as:

(1)  mRTK ⟶ GBM    

where mRTK = mutated receptor tyrosine kinase, GBM = glioblastoma multiforme

In natural language, this expresses the conditional proposition if RTK is mutated, 

then GBM occurs. (Note that in practice one would have to put this conditional 

relationship in context with the array of alterations in say, a mesenchymal GBM, 

and specify a specific RTK mutation,  as a one or more may be mutated—the 

present example is simplified here for theoretical clarity.) If this proposition is 

constrained by the fact that over two-thirds of GBMs harbor RTK mutations, this 
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is  a  reasonable  logical  representation  of  some  glioblastoma  cases.  The  truth-

functional outcomes of this two-term conditional are captured by the truth table 

in  Figure  7,  which exhausts  all  logical  possibilities  for  the  truth value of  the 

conditional given all possible truth values (T or F) of its terms. All possible states 

of  p  and  q—that  is,  the  truth  conditions  of  the  conditional  proposition—are 

captured in the table. As such, it is useful for reasoning about the influence of the 

of  the  component  terms  on  the  truth  value  of  the  conditional,  in  this  case 

between GBM and RTK alterations.

Figure 7: Truth table for the conditional operator (⟶)  
The conditional proposition p ⟶ q  can be asserted as true, 
except if the antecedent (p) is true and the consequent (q) is 
false. This would create the fallacy of denying the consequent.

The  output  of  row  1  for  instance  represents  that  for  cases  of  the 

conditional  in  which  p  and  q  are  both  false,  the  implication  is  true—falsity 

implies falsity. Likewise, row 2 represents that when p is false and q is true, the 

implication is again true because p can be false and still imply q—we could say, 

for example that if it rained then the ground will be wet, but the ground could be 

wet for some other reason other than rain and this generalizes. Row 3 shows that 

when p is true and q is false, the conditional statement is false—if q follows from 
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p, then q is true when p is true and false when p is false (rows 1 and 4). Lastly, 

row 4 shows the obvious case that when p is true and q us true, the conditional 

proposition p ⟶ q is true. Applying these conditional relationships to (1), we can 

reason that, for instance, there are some glioblastomas with RTK mutation (rows 3 

and 4) and some without (rows 1 and 2), and that among RTK mutated brain 

tumors, there may be some that are glioblastoma and some that are not, and this 

matches clinical observation.

This  way  of  reasoning  shows  that  cases  of  disease  can  in  principle  be 

represented logically through the use of propositional logic (Table 2). The approach 

allows one to process the logical possibilities associated with particular cases and 

states of variables to represent facts and perform analyses. Another virtue of the 

approach  is  its  scalability—one  can  imagine  analyzing  a  large  set  of 

interconnected  variables  using  various  logical  operators  and  representing 

complex cases, properties, and states-of-affairs with the terms p, q, r, s and so on 

with  various  operators  to  build  structured  database  of  cases  for   evaluating 

logical  functions  containing  the  terms  of  interest  against  one  another  to  test 

hypotheses, derive conclusions and explore presently unanalyzed relationships, 

or different combinations of relations already known to be significant, such as 

point mutations in particular genes and particular kinds of epigenetic regulation. 

Through logic, these questions can be investigated as logical informatics puzzles. 
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Table 2: Usage and significance of logical operators. 

Propositions  are  represented  various  operators  to  capture  negation  (￢),  conjunction  and 
disjunction (&  ,  ∨),  conditional  relationships  (⟶  ,  ⟷),  and scope (∃,  ∀).  All  can be used to 
represent information in abstract to explore relations and connections based on truth value. 

In  the  general  case  of  diseases  driven  by  a  combination  of  genetics, 

exposure, and environment, logical analysis enables many possible ways to relate 

different types of information that may shed light on causal mechanisms and 

presently unseen connections, as long as the data are structured such that they 

are quantified into logical forms. That is, such that data points represented by p, 

q, r, etc., make sense when substituted into propositions. Consider the following 

general case: disease D occurs when mutations occur in both genes X and Y, but 

not when there are mutations in only X or only Y. Let’s stipulate that we know 

Operator Natural language Definition Use

￢ not negation ￢p  ,  “not P”

& and conjunction p & q  ,  “p and q”

∨ or disjunction p ∨ q  ,  “p or q”

⟶ if…then implication p ⟶ q
“p then q” , “p implies q”

⟷ if and only if equivalence p ⟷ q  ,  “p iff q”

∃
there exists…
for some…
there is at least one…

existential 
quantifier

∃(p) p ⟶ q  

“there exists a p  
such that p implies q”

∀ for all…
given any…

universal 
quantifier

∀(p) p ⟶ q 

“for any p, p implies Q”
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that  a  third  mutation  in  gene  Z  conditionally  amplifies  the  severity  and 

progression of D in this context. We can represent conditions for D then with: 

(2)  mX & mY ⟶ D (where mX, mY = mutated variants of genes X & Y)

Further, we can represent severe (amplified) cases of D, say D*, as:

(3)   (mX & mY) & mZ ⟶ D*

If (2) represents severe cases of disease with poor prognoses, we can then reason 

that since mZ confers increased severity, cases in which Z is not mutated likely 

have a better prognosis, and represent this with:

(4)   (mX & mY) & Z ⟶ D

Similarly, we can reason out what cases are not occurrences of D or D*, namely: 

(5)   (mX & Y) & Z ⟶ ￢D 

(6)   (X & mY) & Z ⟶ ￢D

(7)   (X & Y) & Z ⟶ ￢D
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(2) through (7) are simplified and generalized cases, but I think they sketch a 

viable knowledge representation strategy adaptable to different information contexts 

with little modification For instance, in a glioblastoma analysis we can define X 

as EGFR, Z as MGMT methylation, and so on for other variations.

If data is organized such that it is manipulable with logical operators as 

suggested above, the scope of possible relational analyses is enormous. As long 

as the facts of each case are accurately represented in logical form, the operators 

determine  how  variables  like  mutation  status,  disease  severity,  treatment 

resistance,  disease  progression,  therapeutic  success  or  failure  get  analyzed 

against  one  another.  The  approach  can  also  maintain  its  integrity  as  more 

information and complexity from other domains such as imaging, vital  signs, 

history, and symptoms are incorporated by adding more terms and operators. As 

the database acquires more information and dimension, more relations become 

available for exploration,  and the existing  information can be analyzed from 

different angles to litmus test primary and auxiliary hypotheses. These angles of 

analysis  on  the  data  in  turn  build  and  refine  the  knowledge  network  about 

targeted phenomena. 

In order for this kind of logical analysis to be possible on a statistically 

significant  scale  in  translational  biomedicine  specifically,  sequencing 

information , current knowledge, and clinical outcomes must be stored together 
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(cf.  Hawgood  et  al.  2015,  Olson  2017).  Raw  sequencing  data  (e.g., 

ACTGGACCATA…)  does  not  necessarily  need  to  be  represented  in  such 

databases  for  logical  analysis  to  be  fruitful,  though  it  could  be  imported  in 

analyses  specifically  targeting  sequence  variation  effects—in  those  cases  data 

points would be character strings that could be compared relationally to other 

character  strings  to  evaluate  similarity  and  difference.  For  biomedical 

applications however,  genomic variation states  (e.g.,  wild type, point-mutated, 

etc.)  could  be  sufficient  to  compute,  for  example,  predictions  of  response  to 

targeted  therapy  given  individual  molecular  profiles  and  known  therapeutic 

targets.  Analyses could become more exploratory by querying specifically for 

variants of unknown significance (VUS) that appear across cases of the same or 

related diseases,  shedding light  on their  possible  significance which could be 

followed up with laboratory experiments. 

In  the  specific  case  of  glioblastoma,  we  could  use  the  growth  factor 

pathways  frequently  activated  in  the  disease  state  or  other  genes  that  have 

therapeutic targets to create a data structure that also captures possibly actionable 

or  prognostic  genomic  variations  such  as  EGFR  amplification,  and  IDH1 

mutation, and MGMT promoter methylation (Thomas 2014, Benitez et. al. 2017, 

Lombardi  &  Assem  2017,  cf.  Table  1).  This  and  similar  information  can  be 

represented by a matrix of M rows and N columns such that cases and variables 
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are represented together (Table 3). This data structure represents an important 

first step in inquiry, as the decisions on what columns to use must be driven by 

current  knowledge,  or  regulated  by  a  hypothesis  grounded  in  substantial 

empirical evidence, building in biological insight at ground floor. 

Table 3: Data structure for storing and analyzing genomic information.

Records  of  5  patient  hypothetical  cases  with  3  molecular  variations  important  to  treatment 
decisions.  Truth values are assigned to represent  facts  in each case,  e.g.“true” (T)  for  “EGFR 
application” (see Figure 4)

From  here,  we  can  begin  populating  the  structure  with  the  goal  of 

relationally  analyzing  genomic  alterations  over  different  cases.  Let’s  stipulate 

that  Patient  1’s  glioblastoma is  EGFR  amplified,  IDH1  wild-type,  and MGMT 

promoter methylated. According to present evidence (Thomas 2014, Benitez et. 

al. 2017, Lombardi & Assem 2017 & Cohen 2013) this tumor over-expresses EGFR 

(likely  from  a  vIII  point  mutation  that  prevents  ligand  binding),  is  likely  to 

progress  quickly  and  acquire  more  mutations,  and  is  more  resistant  to  the 

Patient EGFR amplification IDH1 mutation MGMT methylation

1

2

3

4

5
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commonly used alkylating agent chemotherapy temozolomide.  We can assign 

truth values to these variables and those of the other cases to prepare these cases 

for  logical  analysis  (Table  4).  Once  prepared,  the  data  can  be  interrogated 

logically,  in  a  number  of  different  ways  depending  on  which  vertical  or 

horizontal  relationships  one  may  be  interested  in  for  various  purposes, 

experiments, decisions, or actions. 

Table 4: Truth value assignment to molecular variant status.

Molecular  information captured as  truth values.  Truth value sequences  (e.g.  T-F-T)  represent 
alteration load and can be evaluated as the terms  (i.e. truth conditions) of a logical function.

With the data structured this way, we can analyze the data as truth table to 

uncover  scientifically  significant  propositions  and  relationships  across  cases. 

These logical functions (see Stanford 2018 at web.stanford.edu.../truth-table-tool 

to explore possibilities),  if  they accurately represent causal relationships,  or at 

least  what  we  believe  to  be  causal  relationships  based  on  the  best  available 

evidence, can be rendered actionable by logical analysis. For instance, Patient 1’s 

Patient EGFR amplification IDH1 mutation MGMT methylation

1 T F T

2 T T F

3 T F T

4 F T F

5 F T T

http://web.stanford.edu/class/cs103/tools/truth-table-tool/
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MGMT  methylated,  EGFR  amplified,  IDH1  wild-type  tumor  profile  can 

represented by:

(8)   EGFR  & ￢IDH1  & MGMT

Let’s  do  a  practical  thought  experiment:  Say  that  since  IDH1  wild-type 

(unmutated)  tumors  like  Patient  1’s  are  more  aggressive  and  acquire  more 

genomic abnormalities faster, we want to query out from our database all IDH 

wild-type  cases  with  EGFR  amplification  because  we’re  interested  in  the 

mechanism of IDH1  wild-type-accelerated progression and want to offer these 

patients EFGR targeted therapy as quickly as possible. Say we also want to know 

which patients in this set are also MGMT methylated (and thus less resistant to 

chemotherapy with temozolomide) so we can have a second line treatment plan 

for the (unfortunately likely) event that the EGFR targeting strategy fails. In this 

situation, the logical cases we’re looking for are captured by the logical function  

P  (p,  q,  r)  (￢p  &  q)  &  r  with  p,  q,  and  r  standing  for  IDH1  status,  EGFR 

amplification, and MGMT methylation, respectively.  The three-term proposition 

(9)  and its  truth value table  represent  our  molecular  query,  and illustrate  the 

general approach for the logical treatment of molecular information.
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(9)  P: (￢IDH1 & EGFR) & MGMT    …or…

Figure 8: Logical treatment  of molecular 
information. Truth table for (￢p & q)  & r 
representing IDH1 wild-type and EGFR 
amplification in the setting of MGMT  
promoter methylation.

The only case in which the function (￢p & q) & r  (the generalized logical 

form of P) is when p is false, q is true, and r is true. That is, when an individual is 

not IDH1 wild-type, is EGFR amplified), has MGMT promoter methylation that 

silences the oncogene. This logical discovery then suggests testable hypotheses. 

Looking back to our database (Table 4), if we tell an algorithm to pull all records 

with the value sequence that  satisfies these truth conditions,  it  should return 

cases  1 and 3.

Directions for action then appear: In the laboratory, we can investigate any 

tumor  tissue  collected  from  surgeries  these  patients  may  have  had  that  was 

banked  for  further  study  about  IDH1  wild-type  oncogenesis  in  GBM.  In  the 

clinic, we can offer these patients EGFR targeted therapy, and be prepared with a 

second line plan for temozolomide plus radiation therapy (Stupp 2005) if and 

when the EGFR targeted approach fails. In a neuro-oncology clinic where a team 

of oncologists could evaluate and collect data on nearly 100 patients per day, this 
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kind of querying ability allows for the wrangling of rapidly expanding data sets 

that could easily grow to thousands of records in a few months. Add artificial 

intelligence to this situation and live monitoring can be deployed over the data to 

capture new records that meet the logical criteria of interest and anomalies.

In translational biomedical research, the goal is to discover insights about 

the connections between molecular biology and therapy, and we already know a 

lot about them, such as the causal mechanisms of acquired resistance to targeted 

therapy (Neil & Bivona 2017, Foo & Michor 2014) that can be incorporated into 

logical approaches. To illustrate this, let’s stay with neuro-oncology and augment 

tour database to include clinical data in addition to the existing molecular data. 

In this translational database, decisions and outcomes are represented (Table 5).

Table 5: Data structure for translational analysis.

Logical approaches can relate data to explore hypotheses about the relations between molecular 
variation,  treatment choice and sequence,  and observed outcomes.  Abbreviations:  aVEGF, anti-
vascular  endothelial  growth  factor;  C/RT,  chemoradiation;  IT,  immunotherapy;  mTORi, 
mammalian  target  of  rapamycin  inhibitor  OC,  outcome;  PD,  progressive  disease;  PR,  partial 
response; rSx, repeat surgery; SD, stable disease; Sx, surgery; Tx, therapy.

Molecular Data Clinical Data

Patient EGFR 
amp.

IDH1 
mutation

MGMT 
meth. Sx Tx1 OC

1 Tx2 OC
2

1 T F T T rSx PD erlotinib PD

2 T T F T lapatinib PR lapatinib PR

3 T F T T lapatinib PD IT PR

4 F T F F C/RT PD lapatinib PD

5 F T T T gefitinib PD a-mTORi SD
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As above, we can use logic to determine how we want to relate this data 

and bring different aspects  of  it  into view. Say the database has hundreds of 

records. Then, a query can be built  to investigate the effects and outcomes of 

treatment strategies and return records given particular molecular profiles and 

other relevant variables. For instance, we could query out cases with IDH wild-

type and EGFR amplified tumors that are MGMT methylated that were surgically 

resected, then treated with lapatinib L with the function Q:

(10)   Q:  [(￢IDH1 & EGFR)  &  MGMT] & (Sx & L)

Then we can tell the algorithm to return, for all cases with our stipulations in Q, 

the first outcome oc1 of those cases:

(11)   Q:  [(￢IDH1 & EGFR)  &  MGMT] & (Sx & L)  ⟶  display: oc1

Here, Q calls a list of cases in the target subset and their clinical outcomes. With 

this list, we can start to theorize about what kinds of treatment sequences are 

most effective for achieving partial responses given the outcome data, and use 

this information to inform in vitro and in vivo laboratory experiments as well as 
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clinical  treatment  strategies.  Taking  another  step  further,  we  can  have  the 

algorithm return only those cases where successive partial responses occurred: 

(12)  Q:  [(￢IDH1 & EGFR)  &  MGMT] & (Sx & L) ⟶     

         display: ∀(oc1, oc2) (oc1=PR & OC2=PR)

Then, we can pull  samples of the resected tissue form these cases for further 

laboratory analysis  of  the  possible  molecular  mechanisms behind these  (rare) 

positive  results  and investigate  how the  treatment  sequences  used may have 

elicited the partial  responses.  These and other analyses of  the same form can 

enable a plurality of different investigations grounded in the manipulation of 

catalogued  observations.  Relational  database  tools  that  could  implement  this 

kind of logic exist (e.g., mySQL, see https://www.mysql.com), and it would be a 

fruitful exercise to determine if the capabilities of these tools can accommodate 

the approach sketched here. 

I  hope these experiments here have illustrated the value of formal and 

logic in data analysis. Logical approaches are general, flexible, and, in my view, 

allow for analyses more parallel with how we think, make decisions, and act on 

information. Again,  the logic outlined here is  a sketch,  and further research is 

needed to work out the fine details and ensure consistency. There may also be 

ways to sharpen the method to align even more closely with natural cognitive 

https://www.mysql.com
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and knowledge  dynamics.  This  is  the  attractor  of  the  next  and final  section, 

which  focuses  on  directions  for  further  research,  and  aims  at  clarifying  the 

cognitive, analytic, and empirical needs of biomedicine and other scientific fields 

in the setting of growing informatics challenges in contemporary research. 
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4  Future Directions

Knowledge and Information Dynamics

The reasons that motivate data collection in any science are pragmatic. 

They establish a theoretical  orientation and an aim or aims toward and against 

which  actions  are  taken  and decisions  are  made.  In  modern  life  science  and 

medicine,  these  decisions  often  circle  around  the  discovery  of  molecular 

mechanisms in the lab that are exploitable in the clinic. To this end, clinical data 

including  history,  symptoms,  exposures,  behavior,  mental  status,  physiology, 

demographics,  disease  activity,  and  treatment  outcomes  are  tracked  and 

recorded, and constitute the causal stories of individual cases.  These data are 

meant to determine what clinical interventions are appropriate. In translational 

research,  the  primary  aim  is  to  link  these  data  with  molecular  and  other 

information about gene expression dynamics, genomic variation, cell signaling, 

metabolism, and other factors pertaining to the material nature of diseases. This 

strategy  is  meant  to  uncover  causal  mechanisms,  drug  targets,  and  other 

discoveries that can guide action. Thus, the translational move is to synthesize 

these molecular and clinical data to better understand their underlying causality 

when it is encountered in practice.
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Complementary  clinical  and laboratory  efforts  create  different  types  of 

related bodies of  information:  some with clinical  information about particular 

individuals, cases and outcomes, others with causal information about disease 

etiology, progression, molecular properties, and some with a mix of both. This 

third type of data set is characteristically translational and can bridge the gap 

between medical and experimental science. However, as alluded to earlier, the 

forms  of  analysis  best  suited  for  interrogating  the  union  of  these  data  sets 

together  are  undecided,  and  it  seems,  at  least  to  this  writer,  that  efforts  to 

determine these forms are not necessarily high priority research. Perhaps this is 

because such work, if it were to get things right, would entail matters beyond the 

immediate scope of traditional biomedical research projects and grant funding 

criteria, being work that requires information science, knowledge theory, formal 

analysis and a certain level of abstraction from classical research methodology.

Nevertheless,  knowing what  forms of  analysis  are  best  suited for  such 

purposes  would  be  useful  even  if  their  discovery  traverses  traditional  

boundaries.  (This  shouldn’t  be  the  case  in  my  view.  Scope  definitions  for 

scientific or other fields are a rich topic for discussion, and a full treatment of this 

issue is warranted elsewhere.) Here is precisely where pluralism about scientific 

research is  important:  Shouldn’t  research efforts  with  connections  to  a  field’s 

advancement, even those without the traditional contours of research typical in 
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that field, be embraced? This question is a poignant one in life science as it shifts 

and lends itself more and more to analytical methods traditionally found in fields 

such as information science, logic, knowledge theory, and operations research. 

Applications of insights from these fields to problems arising in the life sciences 

can  perhaps  begin  to  solve  problems  related  to  the  information  problem  in 

biomedical research. The above study, I hope, has demonstrated the plausibility 

of  this  kind  of  scientific  pluralism  about  research  through  an  analysis  of  the 

information problem integrating insights and methods from these fields.

Bridging the information gap between theory and practice in science and 

elsewhere calls for nimble, adaptive logical frameworks and techniques that can 

enhance decision making through the active analysis  of  continually  evolving, 

dynamic bodies of information. Dynamicism of this kind is an essential feature of 

modern data sets—they constantly expand and change over time as a result of 

new information.  Simpliciter,  the longer a target  individual  or phenomenon is 

followed,  the  more  information we have about  it.  However,  that  information 

needs to be actively organized and packaged in an intelligible way in context with 

previously existing information and evidence in order to drive effective action. 

The data themselves do not necessarily constitute knowledge about the nature of 

the target or its future behavior, but they do in principle integrate into broader 

epistemic  and  empirical  contexts  that  contribute  to  decision  making  and 
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knowledge states.  Promoting  this information and evidence to knowledge that 

can reliably guide action requires knowing how it fits into different contexts of 

interest. How exactly this plays out in practice is less simple than simply stating 

the situation as a logical puzzle.

Methods  that  can  convert  information  to  actionable  suggestions  could 

have  many  different  forms.  The  method  outlined  above  is  meant  as  a 

groundwork on which to build. By integrating probabilistic or Bayesian methods 

that estimate outcome events by evaluating not only sets of truth values within 

and  over  large  numbers  of  cases,  but  of  probabilities  is  one  way  forward.  

Depending on the truth value set of a particular case, one could determine the 

likelihood of an event’s occurrence by the probabilistic composition of the case 

relative to others of the same form of the larger set. When patterns emerge, we 

might  associate  them with  a  confidence  threshold  to  determine  the  uncertainty 

associated with various actions and act accordingly. However, action in reality is 

not as clear cut or simple as a computing “do X” by evaluating a finite set of 

binary truth values or estimating a probability. It is, nonetheless, a start.

Methods  that  take  modal  value  and  operators  such  as  necessity  (☐), 

possibility (♢) and contingency (Kripke 1977, 2011) into consideration in rapidly 

or unpredictably evolving situations may be useful for constructing models with 

a higher degree of realism. Such methods could assign rational credences—that is, 
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degrees of belief (e.g., as values between 0 and 1)—to particular actions given sets 

of facts, predictions, possible events, or sets thereof and more closely mimic the 

phenomena  of  thought  and  action.  In  my  view,  these  modal  methods  more 

accurately reflect the way we naturally make decisions: We rarely ground our 

decisions  in  explicit  rational  calculus,  but  rather  in  knowledge  and  belief 

relations that account for facts, what we know, what we believe, and what could 

be  the  case  under  various  sets  of  conditions.  Mimicking  these  patterns  in  a 

relational logic for scientific data analysis would harmonize our computational 

methods with our rational and cognitive dispositions, thus creating tools better 

suited for our human style of thinking, regardless of the particular project or task 

at  hand.  The relations we experience in thought and action are complex,  but 

there is no reason in principle why they could not be incorporated into analytic 

methods and algorithm design. So much is already being done in applications of 

artificial  intelligence  to  consumer  behavior  and  economic  data  by  private 

companies  for  maximizing profits  through ‘business  intelligence,’  so  why not 

employ the same tactics to inform action in science, medicine, and analysis?

In order to realize such tools and methods in biomedicine, the way we 

think  about  biomedical  and  translational  research  may  need  general 

reconsideration.  The  characteristically  analog  way  by  which  we  presently 

approach biomedical  problems may encounter  serious  difficulty  dealing  with 
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new, complex, interacting domains and dynamic information structures. In order 

to establish a logic to wrangle this data, we need a through understanding these 

structures—and our own cognitive ones. This is especially needed in fields like 

molecular  oncology,  where  biotechnology  is  used  to  find  aspects  of  disease 

invisible to traditional medical intuition. The missing ingredient is an intelligent 

analytics engine. 

What’s needed are methods for skillfully coping  (Dreyfus 1973)  with the 

particular information dynamics in biomedicine and translational research that, 

once  understood,  can  allow  for  live  monitoring,  creative  manipulation,  and 

informed action in developing situations. In modern analytics, the tools for this 

task are called dashboards.  They allow a user to collect,  store,  and manipulate 

information  in  terms  of  what  they  care  most  about  knowing  from  sets  of 

information.  Dashboards aggregate data,  execute live analysis,  and create live 

reports that can be customized and tweaked according to various operational 

needs (Google 2018). Dashboards are most often used to analyze the performance 

of advertising and web traffic (Figure 9). However, before logical tactics can be 

successfully applied in this way, the information we want (or need) to analyze 

must be organized intelligibly to be maximally useful. An important factor in this 

maximization is  the willingness of individuals,  research centers,  and bio- and 

other technology companies to work together, share data, and uncover insights. 
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Figure 9: Google Analytics Dashboard for live analytics. Intelligent search activity in the United 
States shows search terms, impressions of results, URL clicks and result index position. The data 
is updated live, and visualizations are actively maintained. Trends can be put on different time 
scales and explored by frequency, activity level, or other user interests.

With cognitive  computing platforms like  IBM Watson and cloud-based 

data storage,  monitoring manipulation software from Google,  researchers and 

private entities alike are poised to turn ventures such as Watson Health into full-

fledged, paradigm-defining research methods and practical tools. Applying these 

systems to scientific and biomedical information in combination with the logical 

methods sketched above could yield interesting results, enrich knowledge states, 
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sharpen  inquiry,  and  enable  more  accurate  projection  from  data.  Logical 

genomics  is  one way to approach this  organizational  task that  is  nimble and 

generalizable  enough  to  work  in  contexts  inside  and  outside  science  and 

biomedicine. These tools can be used to generate powerful insights from vast 

amounts  of  information  in  real-time,  and  is  thus  one  way  to  cope  with 

information  problems  in  science  that,  in  my  view,  has  equal  theoretical  and 

practical utility.

The  general  strategy  advocated  here  is  to  logically  and  analytically 

approach how we interact with information, sharpen organizational principles, 

and emphasize the importance of changes in variables, terms, conditions, values, 

implications, and relative significance—that is, dynamics and context—in attaining 

states of knowledge and acting on it. This understanding is, in my view, sharply 

informative for the future development of analytic and intelligent systems that 

can account for these variables and the relations between them to suggest paths 

for  action  based  on  the  best  available  evidence.  Perhaps,  through  enriched 

understanding  of  these  complex  relations  via  these  methods,  computational 

analysis  might  mimic  communication  rather  than  calculation.  With  feedback 

loops,  learning,  and  intelligent  analysis  improving  our  understanding  of  the 

natural  world,  we  may  also  learn  something  about  ourselves  and  our  own 

rationality that swings open the doors of perception and knowledge to the kind 
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of contact  and connectivity with the world promised by the information age. 

That is, the kind of understanding we could use to make this world, indeed, the 

best possible one (Leibniz 1710)—or, at least, to know if we’re asking the best 

possible questions.  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