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Abstract

How do information, rationality, method, and knowledge dynamics shape
what’s possible with science? How do we make maximum contact with reality
through scientific methods and reasoning? When can we assert scientific facts
and confidently act on them? In this work, I approach these questions through a
study of scientific rationality, information, and philosophical logic in context with
some practical and theoretical challenges in contemporary life science research.
The productive aim is to outline tactics for understanding the relations among
scientific knowledge, information, rationality, and action that optimize decision
making in scientific situations. There is a practical focus on translational
biomedicine and molecular oncology because these fields aim to bridge gaps
between theory and practice, and the dependence of rational decision making on
knowledge relations is critical to their success. In my view, these and other
precision scientific approaches may be better understood and executed by
adopting pluralist and dynamic perspectives on science, information, and
knowledge that, I argue, make better contact with reality than some existing
knowledge-making strategies that aim to precipitate isolated scientific facts from

interacting, evolving, and causally related bodies of information.
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Preface

These ideas developed through gaining close acquaintance with the
engineering and informatics aspects of contemporary biotechnology, professional
exposure to the challenges of translational “bench-to-bedside” biomedical
research, and critical consideration of the logic and practice of science. Their core
philosophical foundations developed over a series of seminars in the
Departments of Biological Sciences and Philosophy at Columbia University
between 2016 and 2018 covering perception, pluralism, and theory of knowledge.
As they struck me, these talks made apparent theoretical and practical questions
associated with entrenched patterns of scientific reasoning, and the their impact

on the burgeoning era of precision medicine and its revolutionary aims:

“Precision medicine endeavors to redefine our understanding of disease
onset and progression, treatment response, and health outcomes through the
more precise measurement of potential contributors — for example, molecular
measurements as captured through DNA sequencing technologies or
environmental exposures or other information...”

(Precision Medicine Initiative 2015, my italics)

Deeper thought about this endeavor of precision medicine suggest several
possible strategies for executing the approach, and the potential for a
information-driven paradigm shift in biomedical science. In my view, this

possibility hinges greatly on understanding how these “potential contributors”
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identified with biotechnology may contribute to determining the significance of
molecular data in context with existing knowledge and information, new
discoveries, and the methods we use to determine and act on that data.

In what follows, I consider theoretical and practical aspects of scientific
activity that aim to convert information into knowledge and action. I think the
dynamics of this conversion can be clarified through the use of logic. My main
analytical targets are some theoretical presuppositions of precision approaches
that may affect its realization and expansion over time. My focus is to explore
these foundational presuppositions and consider their implications for scientific
theory and practice generally. Through connections to ideas from outside the
natural sciences—namely from logic and the philosophies of science, perception,
and language—I offer some alternative ways to reason about the issues I think
these presuppositions suggest, and test these alternatives on the hard puzzle that
malignant glioma presents to molecular oncology.

The presentation is (loosely) structured as a systems analysis over
philosophy, theory, methodology, and application. It employs concepts and
techniques that, in my view, motivate scientific pluralism as a useful attitude for
dealing with the challenges of translating scientific information into effective
action and analyzing science generally. Logical methods are imported as

analytical tools for coping with information in ways that could be generalized



and differentially applied to problems that cut across multiple fields of inquiry.
This importation motivates the discussion of theoretical and practical aspects of
scientific pluralism throughout, and critical consideration of how scientific
enterprise, progress, method, and knowledge could be seen differently.

In sum, this work applies non-traditional methods to problems raised by
traditional ones to motivate alternative styles of reasoning that may better suit
the complex problems that arise in contemporary scientific and theoretical
research. These problems often require a plurality of techniques to solve because
they involve many different forms of information, and this thesis attempts to
develop a strategy for understanding what data means, and how we can reason
about acting on it to enact the changes in the world we intend. Getting clear on
these matters involves examining the nature of scientific activity and rationality
generally, and understanding how it is we do, or could do science. From this
perspective we may have a better chance at understanding which methods may

best realize many different scientific aims.



1 Philosophy

The Information Problem

Science has always prioritized validity and soundness. However, it is
possible that given the pace of data generation achieved by next-generation
sequencing technology that science’s classic cognitive schemas are growing
increasingly hard to square with the contemporary research format of quickly
evolving and highly specialized investigations that generate terabytes of
information on a regular basis. (Illumina’s NovaSeq platform can sequence up to
48 human genomes per run, see Illumina 2018) This situation is challenging for
fields such as molecular oncology and others that aim to use empirical
discoveries and information to determine practical strategies with high
probabilities of success to cope with complicated, multivariate natural
phenomena. This aim is virtuous, however its realization is complex from the
molecular level up through the levels of information, decision, and action.

However complex, multivariate natural processes such as diseases can in
principle be investigated and analyzed into actionable and scientifically
interesting conclusions. With torrents of data generated by large next-generation

sequencing projects, integration of molecular profiling into medical clinics, and



the rapid adoption of electronic health records, the data needed to make strong
evidence-based conclusions about scientific direction and medical action are
available, however the accompanying analytic methods are immature. At the
same time, biology and biomedical research are quickly morphing from heavily
empirical disciplines to fields that can benefit greatly from advances in
information science and computational theory. Such advances could be
immensely helpful in wrangling data (Kandel 2011) that may be important
drivers of scientific discovery.

Current efforts in bioinformatics rely heavily on methods imported from
computer science, and these methods have made analyses such as genome-wide
association studies (GWAS) possible. These studies can drill down to the level of
single nucleotide polymorphisms (SNPs) between individuals, and relate SNP
status to traits such as eye color, or to conditions such as cardiovascular disease
and dementia (Pickrell 2014). However, despite recent synergy between biology
and computer science, there are many aspects of biological and biomedical data
analysis that demonstrate the need for novel and intelligent approaches to data
categorization, storage and manipulation.

In order to take advantage of analytic methods to produce actionable
conclusions about any phenomenon, one needs a thorough understanding of it.

Achieving this understanding not trivial, especially for complex phenomena



such as diseases, which entail a plurality of interacting processes at several
levels of organization. Tracking these phenomena and their different aspects to
render them intelligible to scientific analysis is an important step in maximizing
the utility of computation in life science, biomedicine, biotechnology, and
elsewhere. Part of taking this step diligently, in my view, entails getting clear on
some implications, problems, and challenges that arise from having a vast

landscape of information available for analysis.

Scientific Semantics

Given the explosion of sequencing and other data generated by clinics and
laboratories since the Human Genome Project (International Human Genome
Sequencing Consortium 2001), we have vast quantities of molecular information
about which to theorize, but less of a grip on what kind of methods will render
this information into maximally actionable conclusions—that is, into conclusions
that hook onto the world such that we can readily change and reliably produce
the effects we intend. In biomedicine, these effects are the treatment of disease
and the improvement of health through biotechnological methods such as
targeted therapy, immunotherapy, antibody therapy, and molecular profiling.

These approaches and others are meant to provide scientists and practitioners



with the information needed to uncover causal mechanisms and exploit them,
but a lack of systematic understanding about how exactly these general
mechanisms relate to instantiated cases is a limiting factor in making
revolutionary progress in major health concerns such as cancer, Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis.
In my view, the tension in this situation can be framed in terms of a classic
distinction in linguistics and the philosophy of language: we have access to the
syntax, or composition of these conditions at the molecular level as a result of
sequencing technology, but much less of a grip on the semantics, or meaning and
implication, of that data on theory and practice.

Molecular profiling has been espoused as a major step forward for precision

medicine, with more breakthroughs promised to come:

“We have already witnessed early successes of precision medicine. These
include, for example, the development of targeted treatments for cancer and
cystic fibrosis that are effective in patients who share an underlying causal
genotype...In addition, new subtypes of disease are increasingly being
defined through molecular profiling of affected tissues, an advance that is
expected to lead to more focused design and testing of both therapeutic and
preventative strategies — for example, treatments for specific subtypes of a
disease, or behavioral interventions tailored to specific subgroups of the
population.”

(Precision Medicine Initiative 2015)

Despite at least a decade of this general research approach existing as translational
research, many of it's theoretical and practical aspects of are only coarsely

defined. For instance, what do individual molecular profiles tell us about disease



mechanisms in particular versus general cases? Changes in health status?
Quantified probabilities of treatment success? General answers to these types of
questions are surprisingly elusive in practice compared to the clarity of the
material facts molecular profiling can provide.

Through the identification of DNA sequences, molecular profiles suggest
possible treatments based on individual genomic variation. With molecular
profiling data, a clinician may, for instance, decide to use or avoid particular
treatment strategies depending on the impact of a patient’s unique genetic
variants on molecular signaling cascades with druggable targets. Molecular
profiles suggest causal stories about individual disease etiology and progression
that should link up with causal mechanisms discovered in the lab. Thus, the
union of these data sets in principle harbors facts about oncogenesis in
individual (case-specific) and general (mechanistic) senses. By analysis then, one
should be able to reasonably project, from present states of affairs—that is, from
the data—what actions are warranted under particular circumstances. That is,
relations between information and knowledge should tell us actionable and
theoretically important things about natural phenomena grounded in their
material reality such that one can select the best possible course of action given

present empirical facts and background information.



The move from information to action is essential to precision medicine,
however the approach seems less precise in practice, and more like a guessing
game than a scientific paradigm, at least to this writer. In medical practice, there
are relatively weak expectations that molecular profiling will reveal something
beyond what drugs might be efficacious in some cases of disease for some
individuals. Molecular profiles are more often used as tools for identifying and
qualifying patients for clinical trials with genomic inclusion criteria rather than
as maps connecting molecular information to rational action they should, in
theory, be. The disposition characteristic of the active paradigm of “rational
medicine” is to act on the conclusions of large clinical trials, and use molecular
profiling results, if available, as supplementary aides. When clinical trial
enrollment is not a factor, precision tactics tend to recede even further into the
background of medical decision making.

Changing this entrenched disposition seems necessary for precision
medicine to thrive. Some strategies to this end include the development of
“basket trials” in which patients are given targeted therapy based on the
presence of genomic variants in several different tissues of origin, however the
method has raised more issues than it has solved—results have been arguably
lackluster, and cannot get around many of the same road blocks of traditional

strategies, such as tumor heterogeneity and misleading pre-clinical evidence that



doesn’t translate from the lab to the clinic. (Mardis 2018) The results of a recently
published basket trial of the EGFR inhibitor neratinib (Hyman et al. 2018)
embody these issues, reporting that while the technique was helpful in
identifying genomic variables of significance for disease activity and progression,
therapeutic impact was significantly lower than that achieved by standard
available therapies.

This situation exposes that biotechnology and molecular medicine have a
projection problem under the precision paradigm—there is a lot of information that
should clearly guide action and predict success, but it doesn’t necessarily. The
precision paradigm says to consider facts about individual genetics, environment,
history and behavior in the context of a medical culture that generally prioritizes
facts about groups studied in large clinical trials over such facts. This raises a
logical problem for getting the precision project comfortably off the ground.
Often, investigations that would furnish the data sets needed to reach high-
confidence conclusions about the importance and influence of individual-level
factors on health outcomes are studied as secondary, or worse, “exploratory”
endpoints in clinical trials designed primarily for obtaining drug approvals—
these are often unpublished, buried in appendices of scientific papers, or kept at
the chest of private companies. This, in conjunction with open questions and

some skepticism about the precision project (Simon 2008, Bayer & Galea 2015),



substantially reduces the theoretical and practical force of precision methods in
the minds of clinicians in practice, however clear efforts are underway to change
this disposition.

Research institutions and biotechnology companies such as Memorial
Sloan-Kettering (Cheng DT et al. 2015) and Foundation Medicine (Frampton et
al. 2013) are trying to render test results more accessible and actionable with
detailed output reports, however those reports often come too late when the
threat of mortality is high, are perceived as incapable of supplanting medical
intuition, or are sometimes too ambiguous or vague to confidently act on without
significant auxiliary motivations and confirmation. If precision medicine aims to
achieve paradigm status, the knowledge strategy of squaring group (type, kind)
level facts with individual (token) cases may be untenable given the plurality of
component variables. This is not to say that clinical trial results should be
abandoned or supplanted as instructive for biomedical decision making, but
rather that increased epistemic and practical value of molecular profiles and
bioinformatics generally is essential for the expansion of the precision paradigm.
In other words, precision methods and information need to be contextualized
existing methods and knowledge to truly become part of strategic inclinations

and decision algorithms. To understand how this contextualization process could



get going, in my view, we have to get clear on the general relations that hold
between information, knowledge, and action.

To this end, import of another concept from linguistics and the philosophy
of language is useful: pragmatics is the study of linguistic acts and the context in
which they are performed (Stalnaker 1970). I think the pragmatic approach can
be applied in science in a similar way as the syntax/semantics distinction
discussed above. If we consider scientific and medical actions from the outside—
that is, in the practical and theoretical contexts in which they are performed—
success rests on the way we interpret new and existing information against the
background data, or common ground (Stalnaker 2014) connecting particular cases,
theories, and evidence. The ability to act on information with high confidence, in
my view, gears into our grasping the meaning and implications of that data in
relation to existing knowledge, empirical facts, and new discoveries.

Since information plays a key role here, we need a definition: With
Stalnaker (1998) I take information to be something “carryable, transmittable,
and analyzable” and that,”one thing contains information about another if there
are causal and counterfactual dependencies between the states of one and the
states of the other” Relating forms of information is a knowledge-based
theoretical task that calls for new ways to discover, explore, and understand the

relations among data, facts, aims, and action, in addition to causal and
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counterfactual dependencies and their effect on knowledge states. An approach
that aims to pin down the implications of these relations should, in theory,
maximize contact with reality (Chang 2012) and thus be theoretically and
practically useful. That is, if we understand information and action with this
level of relational precision in a way that is consistent with our theoretical
orientations and practical aims, our knowledge states can become finer grained
in the setting of expanding databases and the normative or disciplinary concerns.

Modern medical reasoning is already expected to continually adapt to
perpetual discovery. It now regularly considers experimental conclusions in
clinical situations, and clinical concerns can exert influence on experimental
design. This dynamic is essential to translational research—practitioners and
scientists must weigh the possible and necessary implications of stipulated trials
and experiments against observations, case-specific histories, first and third-
person accounts, new discoveries, institutional expectations, expert opinion, and
community consensus to estimate probabilities of success and strategically make
decisions. Scientific reasoning considered in this way has a decisively analog
character—individuals must parse large quantities of different types of data with
little guidance or systematic theory of how to sort, relate, and draw conclusions
from mosaics of changing information. The cognitive load of this task is quickly

outrunning human rational capacity, making methods for arriving at reliable
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conclusions and making strong predictions increasingly desirable, and perhaps,
necessary.

There are significant motivations for designing methods that can make
crunching data more compatible with human cognitive ability. The ability to
query relations among large bodies of medical literature, high numbers of patient
cases, and molecular facts for theoretical and practical reasons would both clarify
and sharpen decision-oriented tasks and uncover actionable patterns in data.
Efforts are launched and underway to develop such tools in oncology by
curating genomic information and clinical data (Cerami et al. 2012, Gao et al.
2013; see cbioportal.org), however their development and data curation processes
can be slow and cumbersome. Genomic functional annotations are curated by
hand, mostly by post-docs, and development does not typically include parallel
development of decision making aides. However, well-funded efforts are
underway to improve the quality and relevance of these clinical-biological
knowledge databases (e.g. Chakravarty et al. 2017), and major technology
companies (e.g. IBM, Google) are putting their analytics technologies to the test
in innovative collaborative efforts to process and categorize biomedical data.

In parallel with these and other bioinformatics developments in the last
decade, advancements in analytics, machine learning, and artificial intelligence

have changed the way we interact with, process, access, think about, and behave
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with respect to information. Data is constantly collected about human behavior
for specific purposes, and analytical tools are able, from huge torrents of
constantly expanding and changing data, to mine insights about innumerable
business and industrial concerns. Crucially, machine learning technology can
understand the data it is designed to analyze, and so can adapt to changing
patterns in the data as they happen. Al systems thus know our wants, needs,
preferences, and activities based on the data we generate by acting. Although
digital, artificial intelligence and machine learning are modeled on our own
patterns of thought and, coincidentally, the recursive observation-experiment
loop that defines the scientific method. That is, there is a cognitive consistency
between human and machine learning methods. We do, after all, call it artificial
intelligence.

If we can unleash these digital analytic tools on disparate data sets in
science and medicine, the possibilities of what could be achieved are staggering.
Empirically oriented computation that leverages artificial intelligence and human
thought patterns together should in principle cope with vast quantities of
information and evidence whose synthesis exceeds human cognitive reach, and
so opens up wider fields of possibility and implication that can be used to
determine action. So much was already made a public spectacle in 2011 by IBM,

when their question answering computer system Watson appeared on Jeopardy!
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and handedly defeated two human champions. Importantly, Watson weighed his
decisions based on top candidate responses deduced from the source data he was

primed with prior to the competition (Figure 1).

LYY

| $2, 400 $35 881
%gﬂ | l WATSON

Narcolepsy
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Figure 1: IBM’s Watson weighing a decision on Jeopardy! On the nationally televised game
show Jeopardy!, IBM’s question answering computer system Watson (center) gained and held a
commanding lead against human champions Ken Jennings (left) and Brad Rutter (right).
Watson’s weighing strategy, or “thought process,” for response selection was shown at bottom.

Watson has since moved from primetime trivia to natural language
processing and medical literature analysis. It has now “read” more scientific
papers than any human—and has become a relational database and catalogue of
medical syntax unrivaled by any other single source of information in science or
elsewhere. Since Watson is a language-based system, it knows what experts have

said about diseases, mechanisms, methods, and collected data in their published
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work. What Watson doesn’t know is what this expansive body of information
means in human, consequential, causal, or counterfactual terms (cf. Searle 2011).
Watson is a syntactical, deductive whiz, however we retain the semantic,
inductive advantage by virtue of our cognitive ability to interpret information in
conjunction with past experience, present knowledge, and context to act—we are
pragmatic experts. A crucial point here, with connection to the philosophy of
language, is that Watson and similar systems do not necessarily grasp the
pragmatic implicature (Grice 1975) of conceptually related bodies of information.
That is, the significance of particular relations against a shared body of
contextual background thoughts, beliefs, information or other common ground
elements. We deploy linguistic-computational algorithmic systems like Watson
over linguistic information we’ve generated ourselves, and so such systems are
only as effective as our queries to them are precise.

What matters to us are the implications of what we’ve said in the past
about drugs, disease, genes, individuals, and groups in the context of present
theoretical challenges and practical needs. Understanding the connections
between this knowledge and data is the central aim of efforts such as IBM
Watson Health, which promises to apply the cutting edge cognitive computing
power of Watson to massive amounts of disparate health and scientific data, in

principle surmounting many of the big challenges bioinformatics through



15

natural language processing (Chen et. al 2018). With high throughput sequencing
and analytic technologies, we can process information in ways unrealizable in
human minds and brains to sharpen inquiry and make more accurate
predictions. This idea is not new (Goodman 1954), however, what the most
versatile and reliable strategies for translational data analysis are, at least in
biomedicine, undecided, and there is probably not a single approach that will
cover all potential applications and research challenges. Getting clear on the
nature of the cognitive and empirical frameworks we use in research should
signal a path toward more general strategies that could relate disparate yet
conceptually connected (and constantly expanding) bodies of information with
reference to theoretical aims, practical motivations, existing knowledge, prior
experience, and contextual common ground.

In the rest of this work, I aim to sketch an approach to inquiry and data
analysis, with the intent of contouring a logic that can parse multiple different
types of information with enough flexibility to adapt to situations in real time. It
is precisely here where concepts and strategies from formal and philosophical
logic are useful—crucially, they allow one to view and treat information
differently and abstractly. This, in my view, permits richer analyses into possible
implications of information and knowledge relations in interesting ways. Such

techniques are potentially very useful for addressing challenges of translational
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research generally, generating new perspectives on hard problems, and taking
harder lines on new ones. The next section aims to get a better handle on the
mechanics of scientific activity and thought in general so that we may use this
understanding as a background for reasoning about the design of logical analytic

methods.
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2 Theory

Perception, Paradigms and Pluralism

The motivating thesis behind what follows is that if analytic methods are
theoretically reflective of human patterns of thought and knowledge dynamics,
they are that more likely to function as we expect them to, and thus guide
effective action in practice. Phenomena are grasped in perception with a
fundamental figure-ground organization. (Wertheimer 1912, Wageman 2012) They
are in the world, yet perceived differently across individuals due to the unique
perceptual milieu of individual perspectives on the world—that is, differences in
cognitive background, knowledge, experience, training, and social embededness
that structure perception (Merleau-Ponty 1945). The epistemological problem
that arises from this phenomenological reality is posed by Kuhn (1962) in
questioning the validity of an observation language directly related to sense

impressions and analyzable in standard empirical ways:

“"

...[MJodern psychological experimentation is rapidly proliferating phenomena
with which that theory can scarcely deal. The duck-rabbit shows that two men
with the same retinal impressions can see different things; the inverting lenses
show that two men with different retinal impressions can see the same thing.
Psychology supplies a great deal of other evidence to the same effect...”

(Kuhn 1962, §X)
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Here, Kuhn is generally puzzled about the relationship between perception and
knowledge in scientific contexts. Putting Kuhn's point differently, we might say
that perception has a world-dependent content and individual-dependent rendering.
This distinction is useful for thinking about scientific activity and rationality if
we understand empirical observation and classification as a specialized cases of

this general perceptual dynamic (Figure 2).

(A) DUCK (B)

Perception
— > “tree”

| .

Retina

((

RABBIT Object

y i Y

Object

(C

Perception
”‘7/ — > ‘“tree”

. retina
Inverting

lens

Figure 2: Epistemologically significant perceptual phenomena. (A) The duck rabbit is an
unstable perceptual figure flipping between duck and rabbit. Which one is it? Can we say, both?
(B, C) Normal perception of an object via retinal impression that results in the experience of a
tree. An experimental condition with inverted goggles gives the eye a different (inverted)
stimulus, and also produces the perception of a tree. Sources: A: public domain, B & C: author’s
drawings)
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For example, a biologist and a physicist may study the same molecular
phenomenon, yet explain it in different terms or concepts, and so too for
scientists within the same discipline. Thus, observational language stands in
tension with theoretical language that talks about unobservable properties, events
or other scientific constructs, such as atoms or electrons (Blackwell 2004). If
scientists can observe the same phenomenon yet classify it differently, the
conditions for the possibility of this situation is epistemologically and practically
interesting. It suggests that convergent observations with valid divergent
classifications may be fundamental to science and scientific knowledge.

Complex natural phenomena such as perception, wave-particle duality,
genomic regulation, health and disease, cognition, behavior, agency, and
consciousness resist epistemologically monistic rational treatments, signaling a
deficiency in such methods for these research objects. If the aim of science is to
maximize informational contact with reality to learn as much as possible (Chang
2012), scientific pluralism is key to understanding how phenomena can be
cubically observed and differentially classified. Under pluralism, like in Kuhn's
musings, two individuals may have the same knowledge that p but validly differ
in knowledge of how p is the case. One analysis is not necessarily better or worse
than another, and they together condition a richer explanation of the

phenomenon being observed. Cognition, for example, has biological,
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neuroscientific, psychological, computational, and philosophical aspects, and this
plurality of approaches taken together explains the phenomenon differently than
any single approach or unified (monistic) or “interdisciplinary” theory. This
dynamic between disciplines or approaches targeting the same phenomena maps
onto the perceptual distinction between world-dependent content and
individual-dependent rendering suggested above, and is consistent with Kuhn’s
worries about the foundations of scientific activity and knowledge. Scientific
theories and observation are contingent on phenomena out in the world, and
theories about them depend on one’s field and purpose, intentionality, and the
rules of logic.

Any science has a domain and a background on which observations are
found and assertions made—that is, a set of attractors toward that bring its target
phenomena, theoretical presuppositions, logical apparatus, and common
knowledge into view. Sciences can share attractors, and attractors can play
different roles in different fields with divergent theoretical and practical
orientations. Multiple scientific fields and scientists within single fields can thus
approach the different aspects of a phenomenon concurrently (Figure 3A), and
reach divergent conclusions about it. In my view, this suggests that science is a
networked plurality of theories and knowledge mutually concentrated on

phenomena (Figure 3B), rather than a field of competing, independent or isolated
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frameworks after the singular set of best explanations. Under this kind of
scientific pluralism, theories and explanations may differ within and across
disciplines, but together they constitute a set of contact points with reality

through which information and knowledge can be organized.

(A)

Figure 3: Phenomena and knowledge networks. (A) Pictorial representation of a phenomenon
with multiple aspects (A-M) open for investigation. (B) Epistemic network constituting scientific
knowledge of the phenomenon (P) through a plurality of approaches (A-M) targeting the
phenomenon (lines) that are independent, yet connectable (dashes).

Pluralism challenges what we traditionally think about how science
works, especially in contexts where disciplinary lines may blur, implications may
cut across multiple domains, and anomalies don’t lend themselves any particular
established approach. That is, when observations made in scientific contexts are
bound to admit to more than one rationally justified treatment (Chang 2012), and

so are inherently open to multiple analyses. In this context, monist inclinations
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toward theoretical unity and singular explanations lose their force to rich
explanatory models that take multiple perspectives, theories, datasets, and
differential conclusions into consideration. Furthermore, since pluralist models of
explanation are rich in this way, they minimize logical dependence on any single
set of evidence or method.

Scientific pluralism also challenges traditional conceptions of scientific
explanation without undermining its force. Under pluralism, scientific
explanation and knowledge can be treated like networks rather than a collection
of isolated conclusions. Importantly, pluralism does not necessarily pursue
fundamental theories, singular answers, or prioritization of one theoretical
framework over another—it is motivated toward broader explanatory modeling.
Thus, it also diverges from traditional views about scientific structure and
progress, evidenced by its motivation of some unconventional and interesting
accounts of science and knowledge, such as Dupré’s (1981, 1993) promiscuous
realism by which all scientific kinds are natural kinds and Fayerabend’s (1975)
epistemological anarchism by which all possible means of knowledge gathering
should be pursued and developed concurrently. These more radical perspectives
may be important understanding the nature, content, and advancement of
science, especially as research becomes more complex, multidisciplinary,

computational, and information-driven.
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Since pluralism holds that no theory or discipline necessarily makes
stronger contact with reality than any other, it is the network of theories and
explanations about a phenomenon that best accounts for it. It follows from this
structure that science can in principle sustain coexisting, independently
developing lines of inquiry without issue, for no line of inquiry aims to replace or
explain away others. Instead, explanations and theories from independent lines
of inquiry all refer to the target phenomenon, constituting a knowledge network
about it in which perspectives can interconnect and interact as a result of shared
aims, but still exist, function, and develop independently to generate knowledge
(cf. Figure 3B above).

If the structure of science is networked and dynamic as I've suggested,
pluralism challenges rational inclination toward unified scientific theories and
blind adherence to accepted scientific narratives. It also helps cope with the
underdetermination of scientific theories by evidence (Quine 1951). Theories are
said to be underdetermined when we do not have access to all the evidence of a
phenomenon (Harding 1976). According to the Quine-Duhem thesis, no theoretical
claims can be confirmed or denied in isolation from related and auxiliary
hypotheses in the context of incomplete evidence or information. If this is the
case in science (which I believe it is), scientific theories are always subject to

revision in light of new evidence and are therefore evolving, malleable, dynamic
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things. This point about the nature of science itself and challenges the
explanatory sufficiency of any singular theory or monistic epistemological
strategy for explaining natural phenomena and doing science. Without monism,
the foundations of science and scientific progress diverge from traditional
theories, and this departure, in my view, can help address the information

problem and problems like it.

The Computational Paradigm

In Structure, Kuhn argues that science proceeds by the succession of
paradigms, or sets of concepts and assumptions used by scientists to do the work
they do. He defines paradigms as, “universally recognized scientific
achievements that for a time provide model problems and solutions to a
community of practitioners.” On Kuhn's view, evidence-based explanations
become scientific orthodoxy until enough anomalous observations cause a
paradigm shift of theoretical and methodological revision or replacement. After
the shift, scientists see the world differently than under the previous paradigm.

Paradigm shifts are thus driven by community-wide changes in
perception, action, method, and language. They are also driven by community-

wide changes in method. When a new instrument or technique allows scientists
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to approach problems differently, the form of experimental design, observation,
and results shift accordingly and lead to new or revised explanations and
theories. Classic examples of scientific paradigm shifts include Newtonian
mechanics to quantum theory in physics, phlogiston to oxygen chemistry,
behaviorism in psychology, and molecular biology in life science. Kuhn argues
that science progresses in phases of paradigms, alternating between what he calls
normal science, essentially to puzzle-solving, and revolutionary science, conducted
in periods with mounting anomalies. In revolutionary periods, new paradigms
are adopted, and normal science under the new paradigm continues until the

next phase of revolutionary science and subsequent paradigm shift (Figure 4).

PARADIGM A REVOLUTIONARY SCIENCE PARADIGM B

G ——— ———— o ———— ———— ® -..ETC.
Normal Anomaly CRISIS PARADIGM Normal Anomaly CRISIS
Science accumulation SHIFT Science accumulation

Figure 4: Kuhn's (1962) Structure of Scientific Revolutions. Kuhn argues for a historical, temporal,
and phased conception of scientific progress characterized by periods of normal and
revolutionary science that lead to recurrent paradigm shifts and new methods and perspectives
developed to cope with gradually accumulating anomalies.

If there is anything resembling a paradigm shift happening now in life
science, computational biology is a top candidate. Statistical and computational

methods are being adapted for use in biology, yielding interesting results in
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molecular science. Importantly, such methods help wrangle large quantities of
data and uncover, for example, key molecular events in disease processes based
on clustered expression data visualized as heat maps (Cheng et al. 2012).
Interestingly, biological reasoning is not as aggressively or reflectively applied in
the design of quantitative tools for analyzing biological data. Rather, existing
computational methods are applied to biological problems and data rather than
being developed in context with those problems in mind, construing
computational biology as more of an applied computer science than a
quantitative life science. This could be problematic, as it passes over the ground-
floor integration of basic facts about living systems into things like disease
modeling, bioinformatic analyses and other methods. This may leave algorithms
unconstrained by common knowledge relations, and thus further from the actual
conditions of the world they are meant to measure.

The main point here is that there is an important difference between
applying statistical and computational methods to biomedical data and
designing such methods from the ground up. Sociologically, this is demonstrated
by an intellectual and cultural gap between the biological and computer sciences.
Bioinformatics, computational biology, and systems biology bridge the two
fields, however the individuals representing and teaching in these fields are often

computer scientists or statisticians doing their work on a new type of
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information, or biologists adding information scientists to their laboratory teams
to analyze data. This may be because computational fields are advancing by
solving biological problems and the converse is less true. Regardless, biological
data continues to accumulate rapidly with the rising use of sequencing
technology in medical and research centers worldwide, and methods are needed
to wrangle it against existing knowledge to render the information actionable.
Kuhnian sociological worries aside, taming and learning from the data
deluge by relating new information to what we’ve already discovered is
necessary for scientific progress, however it may be defined. The integration of
informatics strategies into the biological sciences opens the door to a new kind of
biological thinking that I think counts as progress. Critically, the entities being
studied are no longer only found on the laboratory bench—they are now also
represented in data that can be analyzed to reach new conclusions. With the rapid
development of next generation sequencing technologies over the past decade,
research institutions are ramping up sequencing facilities and creating
specialized research clusters dedicated to biological data storage, management
and analysis (e.g., Columbia University, Stanford University, Memorial Sloan-
Kettering Cancer Center, New York Genome Center). Simultaneously, new
government initiatives have incentivized the transition to electronic medical

records, creating a different, second information wave that occupies even more
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space than sequencing data in the form of electronic medical records. Adding
another dimension, wearable biometric devices represent another living body of
information, and a method for data collection that ought to be used in
conjunction with more traditional methods. On the sequencing side, there is an
enormous need for the interpretation of stored information about DNA, RNA
and proteins. On the health data side, there is an equal need for organized
representation of information. Thirdly, sequencing data needs relating to clinical
data to be rendered practically meaningful and informative for action. The
varying forms of information involved in this kind of analysis warrant a logical
method capable of dealing with those forms.

With the wealth of sequencing information now available there are
important questions surrounding the best way to store and make this
information available for use by biomedical and clinical communities. For
example, researchers addressing problems in genomic analysis may be collecting
data about patients with a particular disease at medical centers across the globe.
The possibilities of using and analyzing this global body of information are
scientifically exciting and medically important, however they may be
undermined by incongruent methods and standards of data collection, storage
and dissemination across institutions or research programs. These processes have

not been generalized or standardized to drive discovery, and as such,
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investigative efforts may remain individualized, diminishing the possibility for
effective interrogation and manipulation of large, rich data sets containing
clinical and molecular information. Moreover, it is an open question as to what
the best analytic approaches may be. With much speculation around what
sequencing data can means practically in different medical and scientific
contexts, the instability of biomedical analytics could be approaching stagnation.
I think the situation is less dire, yet still in need of critical examination—
methods are computational, but they may not be optimizing action. Perhaps
what is needed are refreshed rational directions and general consideration of the
knowledge dynamics that condition confident action. One way toward these new

directions is, I think, with pluralism (see Figure 5).

(A) (B)
CHEMISTRY
BIOLOGY
NEUROSCIENCE

PSYCHOLOGY

PHILOSOPHY

Figure 5: Pluralist theory of knowledge. (A) Scientific disciplines in isolation. Monistic
knowledge strategies attempt to transpose information between domains without explanatory
loss. (B) Pluralist knowledge strategy as an epistemological tool. Explanations link information
across disciplines, or can be localized, e.g. within biomedicine with, for instance dimensions for
molecular profiles, imaging results, treatments, and outcomes.
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Above I've argued in favor of scientific pluralism as a philosophy of
science that understands science’s epistemic structure as a network with self-
sustaining yet interconnected plurality of results and conclusions taken together
constitute scientific knowledge. Like philosophical scientific pluralism, practical
pluralism about data would accept that no type or piece of information should
weighted, prioritized, privileged, or necessarily eliminated over another, and the
aim is enriched, dimensional analysis—data sets should be maximized for breadth
and cross-sectional analyses pursued to make new discoveries. This is possible
with a pluralist epistemological strategy.

In the next section, I unpack some of the practical implications of this
position by exploring how pluralism about classifying phenomena, collecting
data, constructing databases, and analyzing information opens up new
possibilities for scientific inquiry through logical computation. With this type of
analytic method, information can be treated in new and creative ways since data
can be seen differently depending on what relations are being queried. With this
approach, a plurality of investigations with different practical aims could use
shared, open data sets to test hypotheses and generate broader and deeper
knowledge about natural phenomena. By this method, creative ideas about what
bodies of information could demonstrate by relational analysis can drive scientific

inquiry, observation, and classification, allowing investigators to work from the
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phenomena up and the hypothesis down, with the limits of inquiry only
constrained by the sharpness of our questions. With the rapid maturation of data
science, analytics, and artificial intelligence, the possibilities realizable through
such methods are dizzying. The next section takes this philosophical and
theoretical hypothesis and tests it with molecular oncology to show how it might
get going in practice. We'll turn to the mystifying puzzle of malignant glioma in
molecular neuro-oncology. Molecular oncology faces difficult challenges under
precision medicine due to its complex and multivariate subject matter. We'll start
with a general assessment of the challenges in molecular oncology, then
transition to the case of malignant glioma, and specifically its most deadly

variant, glioblastoma multiforme.
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3 Method & Application

Glioblastoma multiforme

Cancer is a disease with many forms that occur with some frequency
across nearly all mammalian tissue types (National Cancer Institute 2018).
Although the clinical phenomenology of the disease exhibits wide variation, the
many different observed forms of the disease harbor overlapping genetic and
molecular pathologies that cut across disease types, and many cancers share the
same or similar molecular pathologies despite differing tissues of origin (Harris
& McCormick 2010). In this sense, cancer exhibits a natural kind of multiple
realizability (Putnam 1967, Fodor 1974) in which certain material properties or
states are implicated across multiple related but distinct phenomena—different
cancer types share genetic variations and gene expression dynamics, and the
latter further depend on cell signaling, transcription factor action, and other
molecular phenomena. Further, these phenomena all influence, and are
influenced by, individual genetic background, exposures, and environmental
conditions. On top of this complexity, individuals with the same cancers may
also have different molecular profiles and respond differentially to treatments,

making the delineation of clinical diagnostic categories and generalized care
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algorithm construction difficult. This is acutely the case in neuro-oncology, in
which malignant glioma presents some of medicine’s most difficult diagnostic
and therapeutic challenges.

Among brain tumors, malignant gliomas and their Stage IV variant
glioblastoma multiforme (GBM) comprise 17,000 new cancer diagnoses per year
and, although rare, these tumors are associated with, “dismal prognosis and poor
quality of life”: 1-year survival rates of 35.7%, and 5-year survival rates of 4.7%.
With glioblastoma accounting for 82% of all malignant gliomas, neuro-oncology
is faced with a deadly force for which no strong or reliably effective therapeutic
strategy exists (Omuro & DeAngelis 2013). It is in puzzles like these where
biotechnology and precision medicine are hoped to make a difference.

Malignant gliomas form as a result of a multistep process involving
sequential and cumulative pathological genetic alterations resulting from
internal and external forces. Adding again to the complexity, glioblastomas are
histologically and genetically heterogeneous, and have at least 4 different
subclasses with varying genomic alterations according to genome-wide
expression studies: classical, mesenchymal, proneural and neural (Thomas et al.
2014, Table 1). Many of these alterations cut across GBM subclasses, and

additional rare or novel mutations also appear in some cases.
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Table 1: Genomic complexity of glioblastoma multiforme (GBM) subclasses.
Synthesized from Omuro & DeAngelis 2013, Thomas et. al 2014, and Lombardi & Assem 2017

Classical Mesenchymal Proneural Neural G-CIMP
Chr. 7
Chromosomal amplification
abnormalities Chr. 10
deletion
Locus Ink4a/ARF
variations locus deletion
EGFR NF1 PDGFRA EGFR IDH1
amplification/ mutation/deletion  alteration over- alterations
point or vl expression
mutation PDGFRA and IDH1 G-CIMP
nearby RTKs mutation alterations
TP53 High amplification
absence of TP53
Single gene mutation TP53 mutation
variations mutation
NF1
deletion/
silencing
PTEN
point
mutation
CHI3L1, MET, TNF Neuronal
E . and genes in TNF super-family markers
xpres_s lon and NF-«kB expression  expression/
dynamics
pathways over-
High expression expression
Epigenetic MGMT
variation hypermethylation

Classical, mesenchymal, proneural, neural, and G-CIMP tumor classes harbor different
alterations that influence disease severity, progression, and treatment susceptibility or resistance.
Notes and abbreviations: EGFR vIII mutation prevents binding of any known ligand; G-CIMP,
glioma CpG island methylator phenotype

Therapeutic options for GBM are limited, but are expanding as a result of
translating molecular discoveries made in the lab into clinically useful treatment
strategies (Omuro & DeAngelis 2013). It has been discovered, for instance, that

the most common site of mutation in primary glioblastoma is within the
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promoter region of the telomerase reverse transcriptase gene, TERT, which
increases RNA expression thought to be an important contributing factor to GBM
development. These mutations are also found in lower grade gliomas, and in
those cases, are mutually exclusive with mutations of ATRX and IDHI (Thomas
et. al 2014). Complex molecular relations such as these are common in
glioblastoma, thus complicating molecular analyses. Clinical complexity exists as
well: non-cancerous syndromes may mimic malignant glioma on neuroimaging,

requiring novel techniques for diagnosis (Omuro & DeAngelis 2013, Figure 6).

Axial T1-weighted MRI without Axial T1-weighted MRI with Fluid attenuated inversion recovery
contrast gadolinium contrast (FLAIR) MRI

DCE volume transfer coefficient

@ Susceptibility weighted imaging
(Ktrans) map

MRI

Figure 6: Neuroimaging studies of glioblastoma multiforme. Typical glioblastoma features on
magnetic resonance imaging (MRI) studies used in the initial evaluation of a suspected brain
tumor. Special techniques (B-C) must be used to see the tumor at all (A), and the extent of
infiltration of tumor tissue into the healthy brain (from Omuro & DeAngelis 2013).



36

In these last few pages we’ve only scratched the surface of glioblastoma’s
complexity. Due to its complicated nature, GBM was the first solid tumor type to
undergo comprehensive genomic, epigenetic, transcriptional, and proteomic
analysis by The Cancer Genome Atlas (TCGA) effort. From this effort, it has been
determined that over two-thirds of primary glioblastomas harbor mutations or
amplifications of receptor tyrosine kinase (RTK) and growth factor receptor
(GFR) signaling that lead to downstream activation in the PI3K-Akt-mTOR gene
pathway affecting gene transcription, leading to cell survival (Cancer Genome
Atlas Research Network 2008, Verhaak 2010). As a result the RTK (receptor
tyrosine kinase) and GFR (growth factor receptor) pathways have been targeted
as fruitful for therapeutic development, as drugs with similar mechanisms have
been proven effective in other cancer types (Padfield et al 2015). Unfortunately
for glioblastoma, trials testing the use of tyrosine kinase inhibitors of EGFR and
PDGFR, mTOR, Akt, and PI3K have reported disappointing results (Omuro
2007). Aside from biological challenges such as the blood-brain barrier and tumor
microenvironment, operationally most of these trials did not pre-select for
patients with genomic variations susceptible to the targeted therapies they
received (Thomas 2014). If precision medicine is to grow as a paradigm,
opportunities like these must not be missed as a result of not knowing the clinical

significance of particular variations in therapeutic contexts: better, systematic
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screening methods were incorporated into trial designs, the “right” patient
population could have been selected and the trial results could have turned out
differently. As mentioned earlier, basket trials in oncology are attempting to seize
opportunities to study variants in context, however early results indicate that
there are still connections between pre-clinical evidence and medical action that
remain to be understood.

Neuro-oncology is not alone in needing to cope with complex phenomena
with a plurality of molecular events at their core. Biology has been coping with
these types of phenomena for over a century. For instance, pleiotropy, the
phenomenon of a single gene influencing multiple traits (Plate 1910), and
polygenic inheritance, when one trait is influenced by multiple genes (East 1910 &
Nillson-Ehle 1909 in Stearns 2010), bookend a spectrum that captures the worry.
Put generally, and in context again with the philosophy of language, there are
several kinds of ambiguity that arise in biological systems (Hodgkin 1998 via
Empson 1930) at the genetic and molecular levels that make systematic analysis
challenging. Pleiotropy for instance is a complex variable in the sense that it has a
single input that generates a plurality of outputs clustered together through
scientific and medical classification. There is a palpable lack of analytic
approaches with which existing data and present knowledge are analyzed

together to systematically project outcomes of possible events and courses of
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action. These types of analyses have a high translational utility for both
developing hypotheses and making decisions.

One road block in formalizing and categorizing biomedical data and
maximizing translational utility lies in the complex causality that constitutes a
biological fact. This much is illustrated by the analysis of glioblastoma above, but
there are many other examples. For instance, polygenic traits such as height and
skin color arise from the action of multiple genes in different body systems acting
in a (presently unknown) temporal sequence. The underlying complexity of these
traits is informatically dense such that achieving a full understanding of how, for
example, an individual’s height is determined, is no small feat. The situation is
even more daunting in complex and poorly understood diseases such as
glioblastoma, and other major contemporary health concerns such as
Alzheimer’s disease, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
and Parkinson’s disease, where molecular explanations are thought to be the
rate-limiting step in developing effective treatments. These explanations, in my
view, may be more easily attainable through the logical approach to genomics I'll

now begin to sketch.
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Logical Genomics

The application of formal and philosophical logic to information problems
is one way to develop methods that can drive discovery about disease and other
complex biological phenomena such as glioblastoma and pleiotropy. As
mentioned above, over two-thirds of GBM cases have genomic alterations and
corresponding signaling defects in receptor tyrosine kinase (RTK) and growth
factor receptor (GFR) pathways. This broad state of molecular affairs can be
represented by the conditional proposition p — q (if p then ¢), and specified for

the context of neuro-oncology as:

(1) mRTK — GBM

where mRTK = mutated receptor tyrosine kinase, GBM = glioblastoma multiforme

In natural language, this expresses the conditional proposition if RTK is mutated,
then GBM occurs. (Note that in practice one would have to put this conditional
relationship in context with the array of alterations in say, a mesenchymal GBM,
and specify a specific RTK mutation, as a one or more may be mutated—the
present example is simplified here for theoretical clarity.) If this proposition is

constrained by the fact that over two-thirds of GBMs harbor RTK mutations, this
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is a reasonable logical representation of some glioblastoma cases. The truth-
functional outcomes of this two-term conditional are captured by the truth table
in Figure 7, which exhausts all logical possibilities for the truth value of the
conditional given all possible truth values (T or F) of its terms. All possible states
of p and q—that is, the truth conditions of the conditional proposition—are
captured in the table. As such, it is useful for reasoning about the influence of the
of the component terms on the truth value of the conditional, in this case

between GBM and RTK alterations.

P 4 (p—q)
F F T Figure 7: Truth table for the conditional operator (—)

The conditional proposition p — q can be asserted as true,
FI|T T except if the antecedent (p) is true and the consequent (q) is
T F E false. This would create the fallacy of denying the consequent.
T T T

The output of row 1 for instance represents that for cases of the
conditional in which p and g are both false, the implication is true—falsity
implies falsity. Likewise, row 2 represents that when p is false and g is true, the
implication is again true because p can be false and still imply g—we could say,
for example that if it rained then the ground will be wet, but the ground could be
wet for some other reason other than rain and this generalizes. Row 3 shows that

when p is true and q is false, the conditional statement is false—if g follows from
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p, then g is true when p is true and false when p is false (rows 1 and 4). Lastly,
row 4 shows the obvious case that when p is true and g us true, the conditional
proposition p — g is true. Applying these conditional relationships to (1), we can
reason that, for instance, there are some glioblastomas with RTK mutation (rows 3
and 4) and some without (rows 1 and 2), and that among RTK mutated brain
tumors, there may be some that are glioblastoma and some that are not, and this
matches clinical observation.

This way of reasoning shows that cases of disease can in principle be
represented logically through the use of propositional logic (Table 2). The approach
allows one to process the logical possibilities associated with particular cases and
states of variables to represent facts and perform analyses. Another virtue of the
approach is its scalability—one can imagine analyzing a large set of
interconnected variables using various logical operators and representing
complex cases, properties, and states-of-affairs with the terms p, g, 1, s and so on
with various operators to build structured database of cases for evaluating
logical functions containing the terms of interest against one another to test
hypotheses, derive conclusions and explore presently unanalyzed relationships,
or different combinations of relations already known to be significant, such as
point mutations in particular genes and particular kinds of epigenetic regulation.

Through logic, these questions can be investigated as logical informatics puzzles.
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Table 2: Usage and significance of logical operators.

Operator Natural language Definition Use
- not negation -p, “nhot P”
& and conjunction p&q, “pand q”
\Y; or disjunction pvqg, ‘porq”
— if...then implication E’p;eqn o % implies ¢
— if and only if equivalence p—q, ‘piffq”
AP)p—q

there exists...

3 f existential
or some... uantifier “there exists a
there is at least one... 9 >ap ”
such that p implies q
A
\v4 for all... universal (P p—q
given any... quantifier

“for any p, p implies Q”

Propositions are represented various operators to capture negation (), conjunction and
disjunction (& , V), conditional relationships (— , <), and scope (3, V). All can be used to
represent information in abstract to explore relations and connections based on truth value.

In the general case of diseases driven by a combination of genetics,
exposure, and environment, logical analysis enables many possible ways to relate
different types of information that may shed light on causal mechanisms and
presently unseen connections, as long as the data are structured such that they
are quantified into logical forms. That is, such that data points represented by p,
g, 1, etc., make sense when substituted into propositions. Consider the following
general case: disease D occurs when mutations occur in both genes X and Y, but

not when there are mutations in only X or only Y. Let’s stipulate that we know
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that a third mutation in gene Z conditionally amplifies the severity and

progression of D in this context. We can represent conditions for D then with:

(2) mX&mY —D (where mX, mY = mutated variants of genes X & Y)

Further, we can represent severe (amplified) cases of D, say D* as:

B) mX&mY)& mZ — D*

If (2) represents severe cases of disease with poor prognoses, we can then reason

that since mZ confers increased severity, cases in which Z is not mutated likely

have a better prognosis, and represent this with:

4) mX&EmY)&Z—D

Similarly, we can reason out what cases are not occurrences of D or D* namely:

B5) mX&Y)&Z— D
6) X&EmY)&Z— D

7) X&Y)&Z— D
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(2) through (7) are simplified and generalized cases, but I think they sketch a
viable knowledge representation strategqy adaptable to different information contexts
with little modification For instance, in a glioblastoma analysis we can define X
as EGFR, Z as MGMT methylation, and so on for other variations.

If data is organized such that it is manipulable with logical operators as
suggested above, the scope of possible relational analyses is enormous. As long
as the facts of each case are accurately represented in logical form, the operators
determine how variables like mutation status, disease severity, treatment
resistance, disease progression, therapeutic success or failure get analyzed
against one another. The approach can also maintain its integrity as more
information and complexity from other domains such as imaging, vital signs,
history, and symptoms are incorporated by adding more terms and operators. As
the database acquires more information and dimension, more relations become
available for exploration, and the existing information can be analyzed from
different angles to litmus test primary and auxiliary hypotheses. These angles of
analysis on the data in turn build and refine the knowledge network about
targeted phenomena.

In order for this kind of logical analysis to be possible on a statistically
significant scale in translational biomedicine specifically, sequencing

information , current knowledge, and clinical outcomes must be stored together
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(cf. Hawgood et al. 2015 Olson 2017). Raw sequencing data (e.g.,
ACTGGACCATA...) does not necessarily need to be represented in such
databases for logical analysis to be fruitful, though it could be imported in
analyses specifically targeting sequence variation effects—in those cases data
points would be character strings that could be compared relationally to other
character strings to evaluate similarity and difference. For biomedical
applications however, genomic variation states (e.g., wild type, point-mutated,
etc.) could be sufficient to compute, for example, predictions of response to
targeted therapy given individual molecular profiles and known therapeutic
targets. Analyses could become more exploratory by querying specifically for
variants of unknown significance (VUS) that appear across cases of the same or
related diseases, shedding light on their possible significance which could be
followed up with laboratory experiments.

In the specific case of glioblastoma, we could use the growth factor
pathways frequently activated in the disease state or other genes that have
therapeutic targets to create a data structure that also captures possibly actionable
or prognostic genomic variations such as EGFR amplification, and IDHI
mutation, and MGMT promoter methylation (Thomas 2014, Benitez et. al. 2017,
Lombardi & Assem 2017, cf. Table 1). This and similar information can be

represented by a matrix of M rows and N columns such that cases and variables
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are represented together (Table 3). This data structure represents an important
first step in inquiry, as the decisions on what columns to use must be driven by
current knowledge, or regulated by a hypothesis grounded in substantial

empirical evidence, building in biological insight at ground floor.

Table 3: Data structure for storing and analyzing genomic information.

Patient EGFR amplification IDH1 mutation MGMT methylation

1

2
3
4
5

Records of 5 patient hypothetical cases with 3 molecular variations important to treatment
decisions. Truth values are assigned to represent facts in each case, e.g.“true” (T) for “EGFR
application” (see Figure 4)

From here, we can begin populating the structure with the goal of
relationally analyzing genomic alterations over different cases. Let’s stipulate
that Patient 1’s glioblastoma is EGFR amplified, IDH1 wild-type, and MGMT
promoter methylated. According to present evidence (Thomas 2014, Benitez et.
al. 2017, Lombardi & Assem 2017 & Cohen 2013) this tumor over-expresses EGFR
(likely from a oIIl point mutation that prevents ligand binding), is likely to

progress quickly and acquire more mutations, and is more resistant to the
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commonly used alkylating agent chemotherapy temozolomide. We can assign
truth values to these variables and those of the other cases to prepare these cases
for logical analysis (Table 4). Once prepared, the data can be interrogated
logically, in a number of different ways depending on which vertical or
horizontal relationships one may be interested in for various purposes,

experiments, decisions, or actions.

Table 4: Truth value assignment to molecular variant status.

Patient EGFR amplification IDH1 mutation | MGMT methylation
1 T F T
2 T T F
3 T F T
4 F T F
5 F T T

Molecular information captured as truth values. Truth value sequences (e.g. T-F-T) represent
alteration load and can be evaluated as the terms (i.e. truth conditions) of a logical function.

With the data structured this way, we can analyze the data as truth table to
uncover scientifically significant propositions and relationships across cases.

These logical functions (see Stanford 2018 at web.stanford.edu.../truth-table-tool

to explore possibilities), if they accurately represent causal relationships, or at
least what we believe to be causal relationships based on the best available

evidence, can be rendered actionable by logical analysis. For instance, Patient 1’s


http://web.stanford.edu/class/cs103/tools/truth-table-tool/
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MGMT methylated, EGFR amplified, IDHI wild-type tumor profile can

represented by:

(8) EGFR & TIDH1 & MGMT

Let's do a practical thought experiment: Say that since IDH1 wild-type
(unmutated) tumors like Patient 1’s are more aggressive and acquire more
genomic abnormalities faster, we want to query out from our database all IDH
wild-type cases with EGFR amplification because we're interested in the
mechanism of IDH1 wild-type-accelerated progression and want to offer these
patients EFGR targeted therapy as quickly as possible. Say we also want to know
which patients in this set are also MGMT methylated (and thus less resistant to
chemotherapy with temozolomide) so we can have a second line treatment plan
for the (unfortunately likely) event that the EGFR targeting strategy fails. In this
situation, the logical cases we're looking for are captured by the logical function

P, g 7r) (Tp &g &r with p, g, and r standing for IDH1 status, EGFR
amplification, and MGMT methylation, respectively. The three-term proposition
(9) and its truth value table represent our molecular guery, and illustrate the

general approach for the logical treatment of molecular information.
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(9) P: (TIDH1 & EGFR) & MGMT ...or... (GpArg)AD)

Figure 8: Logical treatment of molecular
information. Truth table for (T"p & ¢q) & r
representing IDH1 wild-type and EGFR
amplification in the setting of MGMT
promoter methylation.

—A| 4|44 ||| |n|o
—A| 4|7 |m|4|= |7 |n|e
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M M| M T - T MM

The only case in which the function (7p & q) & r (the generalized logical

form of P) is when p is false, g is true, and r is true. That is, when an individual is
not IDH1 wild-type, is EGFR amplified), has MGMT promoter methylation that
silences the oncogene. This logical discovery then suggests testable hypotheses.
Looking back to our database (Table 4), if we tell an algorithm to pull all records
with the value sequence that satisfies these truth conditions, it should return
cases 1 and 3.

Directions for action then appear: In the laboratory, we can investigate any
tumor tissue collected from surgeries these patients may have had that was
banked for further study about IDHI1 wild-type oncogenesis in GBM. In the
clinic, we can offer these patients EGFR targeted therapy, and be prepared with a
second line plan for temozolomide plus radiation therapy (Stupp 2005) if and
when the EGFR targeted approach fails. In a neuro-oncology clinic where a team

of oncologists could evaluate and collect data on nearly 100 patients per day, this
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kind of querying ability allows for the wrangling of rapidly expanding data sets
that could easily grow to thousands of records in a few months. Add artificial
intelligence to this situation and live monitoring can be deployed over the data to
capture new records that meet the logical criteria of interest and anomalies.

In translational biomedical research, the goal is to discover insights about
the connections between molecular biology and therapy, and we already know a
lot about them, such as the causal mechanisms of acquired resistance to targeted
therapy (Neil & Bivona 2017, Foo & Michor 2014) that can be incorporated into
logical approaches. To illustrate this, let’s stay with neuro-oncology and augment
tour database to include clinical data in addition to the existing molecular data.

In this translational database, decisions and outcomes are represented (Table 5).

Table 5: Data structure for translational analysis.

Molecular Data Clinical Data
e N e e I
1 T F T T rSx PD erlotinib PD
2 T T F T lapatinib PR lapatinib PR
3 T F T T lapatinib PD IT PR
4 F T F F C/RT PD lapatinib PD
5 F T T T gefitinib PD a-mTORi SD

Logical approaches can relate data to explore hypotheses about the relations between molecular
variation, treatment choice and sequence, and observed outcomes. Abbreviations: aVEGF, anti-
vascular endothelial growth factor; C/RT, chemoradiation; IT, immunotherapy; mTOR,
mammalian target of rapamycin inhibitor OC, outcome; PD, progressive disease; PR, partial
response; rSx, repeat surgery; SD, stable disease; Sx, surgery; Tx, therapy.
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As above, we can use logic to determine how we want to relate this data
and bring different aspects of it into view. Say the database has hundreds of
records. Then, a query can be built to investigate the effects and outcomes of
treatment strategies and return records given particular molecular profiles and
other relevant variables. For instance, we could query out cases with IDH wild-
type and EGFR amplified tumors that are MGMT methylated that were surgically

resected, then treated with lapatinib L with the function Q:

(10) Q: [(TIDH1 & EGFR) & MGMT] & (Sx & L)

Then we can tell the algorithm to return, for all cases with our stipulations in Q,

the first outcome oc1 of those cases:

(11) Q: [(TIDH1 & EGFR) & MGMT] & (Sx & L) — display: oc1

Here, Q calls a list of cases in the target subset and their clinical outcomes. With
this list, we can start to theorize about what kinds of treatment sequences are
most effective for achieving partial responses given the outcome data, and use

this information to inform in vitro and in vivo laboratory experiments as well as
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clinical treatment strategies. Taking another step further, we can have the

algorithm return only those cases where successive partial responses occurred:

(12) Q: [(TIDH1 & EGFR) & MGMT] & (Sx & L) —

display: ¥ (oc1, oc2) (oc1=PR & OC2=PR)

Then, we can pull samples of the resected tissue form these cases for further
laboratory analysis of the possible molecular mechanisms behind these (rare)
positive results and investigate how the treatment sequences used may have
elicited the partial responses. These and other analyses of the same form can
enable a plurality of different investigations grounded in the manipulation of

catalogued observations. Relational database tools that could implement this

kind of logic exist (e.g., mySQL, see https:/ /www.mysgl.com), and it would be a
fruitful exercise to determine if the capabilities of these tools can accommodate
the approach sketched here.

I hope these experiments here have illustrated the value of formal and
logic in data analysis. Logical approaches are general, flexible, and, in my view,
allow for analyses more parallel with how we think, make decisions, and act on
information. Again, the logic outlined here is a sketch, and further research is
needed to work out the fine details and ensure consistency. There may also be

ways to sharpen the method to align even more closely with natural cognitive
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and knowledge dynamics. This is the attractor of the next and final section,
which focuses on directions for further research, and aims at clarifying the
cognitive, analytic, and empirical needs of biomedicine and other scientific fields

in the setting of growing informatics challenges in contemporary research.
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4 Future Directions

Knowledge and Information Dynamics

The reasons that motivate data collection in any science are pragmatic.
They establish a theoretical orientation and an aim or aims toward and against
which actions are taken and decisions are made. In modern life science and
medicine, these decisions often circle around the discovery of molecular
mechanisms in the lab that are exploitable in the clinic. To this end, clinical data
including history, symptoms, exposures, behavior, mental status, physiology,
demographics, disease activity, and treatment outcomes are tracked and
recorded, and constitute the causal stories of individual cases. These data are
meant to determine what clinical interventions are appropriate. In translational
research, the primary aim is to link these data with molecular and other
information about gene expression dynamics, genomic variation, cell signaling,
metabolism, and other factors pertaining to the material nature of diseases. This
strategy is meant to uncover causal mechanisms, drug targets, and other
discoveries that can guide action. Thus, the translational move is to synthesize
these molecular and clinical data to better understand their underlying causality

when it is encountered in practice.
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Complementary clinical and laboratory efforts create different types of
related bodies of information: some with clinical information about particular
individuals, cases and outcomes, others with causal information about disease
etiology, progression, molecular properties, and some with a mix of both. This
third type of data set is characteristically translational and can bridge the gap
between medical and experimental science. However, as alluded to earlier, the
forms of analysis best suited for interrogating the union of these data sets
together are undecided, and it seems, at least to this writer, that efforts to
determine these forms are not necessarily high priority research. Perhaps this is
because such work, if it were to get things right, would entail matters beyond the
immediate scope of traditional biomedical research projects and grant funding
criteria, being work that requires information science, knowledge theory, formal
analysis and a certain level of abstraction from classical research methodology.

Nevertheless, knowing what forms of analysis are best suited for such
purposes would be useful even if their discovery traverses traditional
boundaries. (This shouldn’t be the case in my view. Scope definitions for
scientific or other fields are a rich topic for discussion, and a full treatment of this
issue is warranted elsewhere.) Here is precisely where pluralism about scientific
research is important: Shouldn’t research efforts with connections to a field’s

advancement, even those without the traditional contours of research typical in
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that field, be embraced? This question is a poignant one in life science as it shifts
and lends itself more and more to analytical methods traditionally found in fields
such as information science, logic, knowledge theory, and operations research.
Applications of insights from these fields to problems arising in the life sciences
can perhaps begin to solve problems related to the information problem in
biomedical research. The above study, I hope, has demonstrated the plausibility
of this kind of scientific pluralism about research through an analysis of the
information problem integrating insights and methods from these fields.
Bridging the information gap between theory and practice in science and
elsewhere calls for nimble, adaptive logical frameworks and techniques that can
enhance decision making through the active analysis of continually evolving,
dynamic bodies of information. Dynamicism of this kind is an essential feature of
modern data sets—they constantly expand and change over time as a result of
new information. Simpliciter, the longer a target individual or phenomenon is
followed, the more information we have about it. However, that information
needs to be actively organized and packaged in an intelligible way in context with
previously existing information and evidence in order to drive effective action.
The data themselves do not necessarily constitute knowledge about the nature of
the target or its future behavior, but they do in principle integrate into broader

epistemic and empirical contexts that contribute to decision making and
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knowledge states. Promoting this information and evidence to knowledge that
can reliably guide action requires knowing how it fits into different contexts of
interest. How exactly this plays out in practice is less simple than simply stating
the situation as a logical puzzle.

Methods that can convert information to actionable suggestions could
have many different forms. The method outlined above is meant as a
groundwork on which to build. By integrating probabilistic or Bayesian methods
that estimate outcome events by evaluating not only sets of truth values within
and over large numbers of cases, but of probabilities is one way forward.
Depending on the truth value set of a particular case, one could determine the
likelihood of an event’s occurrence by the probabilistic composition of the case
relative to others of the same form of the larger set. When patterns emerge, we
might associate them with a confidence threshold to determine the uncertainty
associated with various actions and act accordingly. However, action in reality is
not as clear cut or simple as a computing “do X” by evaluating a finite set of
binary truth values or estimating a probability. It is, nonetheless, a start.

Methods that take modal value and operators such as necessity (O),

possibility () and contingency (Kripke 1977, 2011) into consideration in rapidly

or unpredictably evolving situations may be useful for constructing models with

a higher degree of realism. Such methods could assign rational credences—that is,
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degrees of belief (e.g., as values between 0 and 1)—to particular actions given sets
of facts, predictions, possible events, or sets thereof and more closely mimic the
phenomena of thought and action. In my view, these modal methods more
accurately reflect the way we naturally make decisions: We rarely ground our
decisions in explicit rational calculus, but rather in knowledge and belief
relations that account for facts, what we know, what we believe, and what could
be the case under various sets of conditions. Mimicking these patterns in a
relational logic for scientific data analysis would harmonize our computational
methods with our rational and cognitive dispositions, thus creating tools better
suited for our human style of thinking, regardless of the particular project or task
at hand. The relations we experience in thought and action are complex, but
there is no reason in principle why they could not be incorporated into analytic
methods and algorithm design. So much is already being done in applications of
artificial intelligence to consumer behavior and economic data by private
companies for maximizing profits through ‘business intelligence,” so why not
employ the same tactics to inform action in science, medicine, and analysis?

In order to realize such tools and methods in biomedicine, the way we
think about biomedical and translational research may need general
reconsideration. The characteristically analog way by which we presently

approach biomedical problems may encounter serious difficulty dealing with
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new, complex, interacting domains and dynamic information structures. In order
to establish a logic to wrangle this data, we need a through understanding these
structures—and our own cognitive ones. This is especially needed in fields like
molecular oncology, where biotechnology is used to find aspects of disease
invisible to traditional medical intuition. The missing ingredient is an intelligent
analytics engine.

What's needed are methods for skillfully coping (Dreyfus 1973) with the
particular information dynamics in biomedicine and translational research that,
once understood, can allow for live monitoring, creative manipulation, and
informed action in developing situations. In modern analytics, the tools for this
task are called dashboards. They allow a user to collect, store, and manipulate
information in terms of what they care most about knowing from sets of
information. Dashboards aggregate data, execute live analysis, and create live
reports that can be customized and tweaked according to various operational
needs (Google 2018). Dashboards are most often used to analyze the performance
of advertising and web traffic (Figure 9). However, before logical tactics can be
successfully applied in this way, the information we want (or need) to analyze
must be organized intelligibly to be maximally useful. An important factor in this
maximization is the willingness of individuals, research centers, and bio- and

other technology companies to work together, share data, and uncover insights.
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Figure 9: Google Analytics Dashboard for live analytics. Intelligent search activity in the United
States shows search terms, impressions of results, URL clicks and result index position. The data
is updated live, and visualizations are actively maintained. Trends can be put on different time
scales and explored by frequency, activity level, or other user interests.

With cognitive computing platforms like IBM Watson and cloud-based

data storage, monitoring manipulation software from Google, researchers and

private entities alike are poised to turn ventures such as Watson Health into full-

fledged, paradigm-defining research methods and practical tools. Applying these

systems to scientific and biomedical information in combination with the logical

methods sketched above could yield interesting results, enrich knowledge states,
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sharpen inquiry, and enable more accurate projection from data. Logical
genomics is one way to approach this organizational task that is nimble and
generalizable enough to work in contexts inside and outside science and
biomedicine. These tools can be used to generate powerful insights from vast
amounts of information in real-time, and is thus one way to cope with
information problems in science that, in my view, has equal theoretical and
practical utility.

The general strategy advocated here is to logically and analytically
approach how we interact with information, sharpen organizational principles,
and empbhasize the importance of changes in variables, terms, conditions, values,
implications, and relative significance—that is, dynamics and context—in attaining
states of knowledge and acting on it. This understanding is, in my view, sharply
informative for the future development of analytic and intelligent systems that
can account for these variables and the relations between them to suggest paths
for action based on the best available evidence. Perhaps, through enriched
understanding of these complex relations via these methods, computational
analysis might mimic communication rather than calculation. With feedback
loops, learning, and intelligent analysis improving our understanding of the
natural world, we may also learn something about ourselves and our own

rationality that swings open the doors of perception and knowledge to the kind
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of contact and connectivity with the world promised by the information age.
That is, the kind of understanding we could use to make this world, indeed, the
best possible one (Leibniz 1710)—or, at least, to know if we're asking the best

possible questions.
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